Q. If tanA=512 and cosB=178 and angles A and B are in Quadrant I, find the value of tan(A−B).Answer:
Apply tan(A−B) formula: Use the formula for tan(A−B), which is tan(A−B)=1+tanA⋅tanBtanA−tanB. We know tanA=512. We need to find tanB using the given cosB=178.
Find tanB: Since cosB=178, we can find sinB using the Pythagorean identity sin2B+cos2B=1. sin2B=1−cos2B sin2B=1−(178)2 sin2B=1−28964 sin2B=289289−64 sin2B=289225 sinB=289225 cosB=1780
Calculate tan(A−B): Now we can find tanB using the ratio tanB=cosBsinB. tanB=1715/178 tanB=1715⋅817 tanB=815
Simplify numerator and denominator: Substitute the values of tanA and tanB into the tan(A−B) formula.tan(A−B)=1+tanA⋅tanBtanA−tanBtan(A−B)=1+(512)⋅(815)(512)−(815)
Divide to find tan(A−B): Simplify the numerator and the denominator separately.Numerator: 512 - 815 = 4096 - 4075 = 4096−75 = 4021Denominator: 1+512×815 = 1+40180 = 1+4.5 = 5120
Divide to find tan(A−B): Simplify the numerator and the denominator separately.Numerator: (12/5)−(15/8)=(96/40)−(75/40)=(96−75)/40=21/40Denominator: 1+(12/5)×(15/8)=1+(180/40)=1+4.5=5.5Now divide the numerator by the denominator to find tan(A−B).tan(A−B)=(21/40)/(5.5)tan(A−B)=(21/40)×(1/5.5)tan(A−B)=21/(40×5.5)tan(A−B)=21/220tan(A−B)=3/40
More problems from Find trigonometric ratios using multiple identities