Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan A=(12)/(5) and 
cos B=(8)/(17) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If tanA=125 \tan A=\frac{12}{5} and cosB=817 \cos B=\frac{8}{17} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If tanA=125 \tan A=\frac{12}{5} and cosB=817 \cos B=\frac{8}{17} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Apply tan(AB)\tan(A-B) formula: Use the formula for tan(AB)\tan(A-B), which is tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}. We know tanA=125\tan A = \frac{12}{5}. We need to find tanB\tan B using the given cosB=817\cos B = \frac{8}{17}.
  2. Find tanB\tan B: Since cosB=817\cos B = \frac{8}{17}, we can find sinB\sin B using the Pythagorean identity sin2B+cos2B=1\sin^2 B + \cos^2 B = 1.
    sin2B=1cos2B\sin^2 B = 1 - \cos^2 B
    sin2B=1(817)2\sin^2 B = 1 - \left(\frac{8}{17}\right)^2
    sin2B=164289\sin^2 B = 1 - \frac{64}{289}
    sin2B=28964289\sin^2 B = \frac{289 - 64}{289}
    sin2B=225289\sin^2 B = \frac{225}{289}
    sinB=225289\sin B = \sqrt{\frac{225}{289}}
    cosB=817\cos B = \frac{8}{17}00
  3. Calculate tan(AB)\tan(A-B): Now we can find tanB\tan B using the ratio tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}.
    tanB=1517/817\tan B = \frac{15}{17} / \frac{8}{17}
    tanB=1517178\tan B = \frac{15}{17} \cdot \frac{17}{8}
    tanB=158\tan B = \frac{15}{8}
  4. Simplify numerator and denominator: Substitute the values of tanA\tan A and tanB\tan B into the tan(AB)\tan(A-B) formula.\newlinetan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}\newlinetan(AB)=(125)(158)1+(125)(158)\tan(A-B) = \frac{(\frac{12}{5}) - (\frac{15}{8})}{1 + (\frac{12}{5}) \cdot (\frac{15}{8})}
  5. Divide to find tan(AB)\tan(A-B): Simplify the numerator and the denominator separately.\newlineNumerator: 125\frac{12}{5} - 158\frac{15}{8} = 9640\frac{96}{40} - 7540\frac{75}{40} = 967540\frac{96 - 75}{40} = 2140\frac{21}{40}\newlineDenominator: 1+125×1581 + \frac{12}{5} \times \frac{15}{8} = 1+180401 + \frac{180}{40} = 1+4.51 + 4.5 = 125\frac{12}{5}00
  6. Divide to find tan(AB)\tan(A-B): Simplify the numerator and the denominator separately.\newlineNumerator: (12/5)(15/8)=(96/40)(75/40)=(9675)/40=21/40(12/5) - (15/8) = (96/40) - (75/40) = (96 - 75) / 40 = 21 / 40\newlineDenominator: 1+(12/5)×(15/8)=1+(180/40)=1+4.5=5.51 + (12/5) \times (15/8) = 1 + (180/40) = 1 + 4.5 = 5.5Now divide the numerator by the denominator to find tan(AB)\tan(A-B).\newlinetan(AB)=(21/40)/(5.5)\tan(A-B) = (21 / 40) / (5.5)\newlinetan(AB)=(21/40)×(1/5.5)\tan(A-B) = (21 / 40) \times (1 / 5.5)\newlinetan(AB)=21/(40×5.5)\tan(A-B) = 21 / (40 \times 5.5)\newlinetan(AB)=21/220\tan(A-B) = 21 / 220\newlinetan(AB)=3/40\tan(A-B) = 3 / 40

More problems from Find trigonometric ratios using multiple identities