Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
cos x=(sqrt5)/(5) and 
sin y=(1)/(3), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
sin(x+y), in simplest radical form.
Answer:

Given that cosx=55 \cos x=\frac{\sqrt{5}}{5} and siny=13 \sin y=\frac{1}{3} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(x+y) \sin (x+y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that cosx=55 \cos x=\frac{\sqrt{5}}{5} and siny=13 \sin y=\frac{1}{3} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(x+y) \sin (x+y) , in simplest radical form.\newlineAnswer:
  1. Use Sine Addition Formula: To find sin(x+y)\sin(x+y), we will use the sine addition formula: sin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y). First, we need to find sin(x)\sin(x) and cos(y)\cos(y).
  2. Find sin(x)\sin(x): Since xx is in Quadrant I, sin(x)\sin(x) is positive. We can find sin(x)\sin(x) using the Pythagorean identity: sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1. We know cos(x)=55\cos(x) = \frac{\sqrt{5}}{5}, so we can solve for sin(x)\sin(x).sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x)sin2(x)=1(55)2\sin^2(x) = 1 - \left(\frac{\sqrt{5}}{5}\right)^2sin2(x)=1525\sin^2(x) = 1 - \frac{5}{25}xx00xx11xx22xx33xx44
  3. Find cos(y)\cos(y): Now we need to find cos(y)\cos(y). Since yy is in Quadrant I, cos(y)\cos(y) is also positive. Using the Pythagorean identity again: sin2(y)+cos2(y)=1\sin^2(y) + \cos^2(y) = 1. We know sin(y)=13\sin(y) = \frac{1}{3}, so we can solve for cos(y)\cos(y).\newlinecos2(y)=1sin2(y)\cos^2(y) = 1 - \sin^2(y)\newlinecos2(y)=1(13)2\cos^2(y) = 1 - \left(\frac{1}{3}\right)^2\newlinecos2(y)=119\cos^2(y) = 1 - \frac{1}{9}\newlinecos(y)\cos(y)00\newlinecos(y)\cos(y)11\newlinecos(y)\cos(y)22\newlinecos(y)\cos(y)33
  4. Calculate sin(x+y)\sin(x+y): Now that we have sin(x)\sin(x) and cos(y)\cos(y), we can use the sine addition formula to find sin(x+y)\sin(x+y).sin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)sin(x+y)=[255][223]+[55][13]\sin(x+y) = \left[\frac{2\sqrt{5}}{5}\right] * \left[\frac{2\sqrt{2}}{3}\right] + \left[\frac{\sqrt5}{5}\right] * \left[\frac{1}{3}\right]sin(x+y)=[41015]+[515]\sin(x+y) = \left[\frac{4\sqrt{10}}{15}\right] + \left[\frac{\sqrt5}{15}\right]sin(x+y)=[410+515]\sin(x+y) = \left[\frac{4\sqrt{10} + \sqrt5}{15}\right]

More problems from Find trigonometric ratios using multiple identities