Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

re: 
1//2
Penalty: 1 off
Watch Video
Show Examples
fiven 
cot A=-(5)/(sqrt171) and that angle 
A is in Quadrant IV, find the exact value of 
sin A n simplest radical form using a rational denominator.
Answer Attempt 2 out of 3

-sqrt171
Submit Answer

\newlineGiven cotA=5171 \cot A=-\frac{5}{\sqrt{171}} and that angle A A is in Quadrant IV, find the exact value of sinA \sin A n simplest radical form using a rational denominator.\newlineAnswer____

Full solution

Q. \newlineGiven cotA=5171 \cot A=-\frac{5}{\sqrt{171}} and that angle A A is in Quadrant IV, find the exact value of sinA \sin A n simplest radical form using a rational denominator.\newlineAnswer____
  1. Use Pythagorean Identity: Use the Pythagorean identity for cotangent and sine: cot2(A)+1=csc2(A)\cot^2(A) + 1 = \csc^2(A). Since we know cotA\cot A, we can find cscA\csc A and then sinA\sin A.
  2. Calculate csc2(A)\csc^2(A): Calculate csc2(A)\csc^2(A) using the identity: csc2(A)=cot2(A)+1\csc^2(A) = \cot^2(A) + 1. Substitute cotA=5171\cot A = -\frac{5}{\sqrt{171}} into the identity. csc2(A)=[5171]2+1\csc^2(A) = \left[-\frac{5}{\sqrt{171}}\right]^2 + 1 csc2(A)=25171+1\csc^2(A) = \frac{25}{171} + 1 csc2(A)=25171+171171\csc^2(A) = \frac{25}{171} + \frac{171}{171} csc2(A)=196171\csc^2(A) = \frac{196}{171}
  3. Find csc(A)\csc(A): Find csc(A)\csc(A) by taking the square root of csc2(A)\csc^2(A).
    csc(A)=196171\csc(A) = \sqrt{\frac{196}{171}}
    csc(A)=196171\csc(A) = \frac{\sqrt{196}}{\sqrt{171}}
    csc(A)=14171\csc(A) = \frac{14}{\sqrt{171}}
    Since we need a rational denominator, rationalize the denominator.
    csc(A)=(14171)(171171)\csc(A) = \left(\frac{14}{\sqrt{171}}\right) \cdot \left(\frac{\sqrt{171}}{\sqrt{171}}\right)
    csc(A)=14171171\csc(A) = \frac{14\sqrt{171}}{171}
  4. Find sin(A)\sin(A): Since csc(A)\csc(A) is the reciprocal of sin(A)\sin(A), we can find sin(A)\sin(A) by taking the reciprocal of csc(A)\csc(A).
    sin(A)=1csc(A)\sin(A) = \frac{1}{\csc(A)}
    sin(A)=1(14171171)\sin(A) = \frac{1}{\left(\frac{14\sqrt{171}}{171}\right)}
    sin(A)=17114171\sin(A) = \frac{171}{14\sqrt{171}}
  5. Simplify sin(A)\sin(A): Simplify the expression for sin(A)\sin(A) by dividing both the numerator and the denominator by the greatest common divisor, which is 1414.
    sin(A)=17114/1711414\sin(A) = \frac{171}{14}/\frac{\sqrt{171}\cdot 14}{14}
    sin(A)=17114/171\sin(A) = \frac{171}{14}/\sqrt{171}
    sin(A)=171141171\sin(A) = \frac{171}{14} \cdot \frac{1}{\sqrt{171}}
    sin(A)=17114171\sin(A) = \frac{171}{14\cdot\sqrt{171}}
  6. Include negative sign: Since angle AA is in Quadrant IV, sinA\sin A must be negative. Therefore, we must include the negative sign in our final answer.\newlinesin(A)=17114171\sin(A) = -\frac{171}{14\sqrt{171}}

More problems from Find trigonometric ratios using multiple identities