Q. If tanA=1235 and cosB=135 and angles A and B are in Quadrant I, find the value of tan(A+B).Answer:
Apply Tangent Addition Formula: Use the tangent addition formula: tan(A+B)=1−tanA⋅tanBtanA+tanB. First, we need to find tanB. Since cosB=135 and B is in Quadrant I, we can find sinB using the Pythagorean identity sin2B+cos2B=1. sin2B=1−cos2Bsin2B=1−(135)2sin2B=1−16925sin2B=169169−16925tanB0tanB1tanB2
Find sinB: Now that we have sinB, we can find tanB using the definition tanB=cosBsinB.tanB=5/1312/13\tan B = \frac{12/13} \times \frac{13/5}tanB=512
Find tanB: Now we have both tanA and tanB, so we can use the tangent addition formula.tan(A+B)=1−tanA⋅tanBtanA+tanBtan(A+B)=1−(1235)⋅(512)(1235)+(512)
Use Tangent Addition Formula: Simplify the numerator and the denominator separately.Numerator: (1235)+(512)=(12×535×5+12×12)=(60175+144)=60319Denominator: 1−(1235)×(512)=1−(12×535×12)=1−(6035×12)=1−7=−6
Simplify Numerator and Denominator: Now, divide the numerator by the denominator to find tan(A+B).tan(A+B)=60319/(−6)tan(A+B)=60319×−61tan(A+B)=−360319
More problems from Find trigonometric ratios using multiple identities