Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan A=(35)/(12) and 
cos B=(5)/(13) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If tanA=3512 \tan A=\frac{35}{12} and cosB=513 \cos B=\frac{5}{13} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If tanA=3512 \tan A=\frac{35}{12} and cosB=513 \cos B=\frac{5}{13} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Apply Tangent Addition Formula: Use the tangent addition formula: tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}. First, we need to find tanB\tan B. Since cosB=513\cos B = \frac{5}{13} and BB is in Quadrant I, we can find sinB\sin B using the Pythagorean identity sin2B+cos2B=1\sin^2 B + \cos^2 B = 1. sin2B=1cos2B\sin^2 B = 1 - \cos^2 B sin2B=1(513)2\sin^2 B = 1 - (\frac{5}{13})^2 sin2B=125169\sin^2 B = 1 - \frac{25}{169} sin2B=16916925169\sin^2 B = \frac{169}{169} - \frac{25}{169} tanB\tan B00 tanB\tan B11 tanB\tan B22
  2. Find sinB\sin B: Now that we have sinB\sin B, we can find tanB\tan B using the definition tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}.\newlinetanB=12/135/13\tan B = \frac{12/13}{5/13}\newline\tan B = \frac{12/13} \times \frac{13/5}\newlinetanB=125\tan B = \frac{12}{5}
  3. Find tanB\tan B: Now we have both tanA\tan A and tanB\tan B, so we can use the tangent addition formula.tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}tan(A+B)=(3512)+(125)1(3512)(125)\tan(A+B) = \frac{(\frac{35}{12}) + (\frac{12}{5})}{1 - (\frac{35}{12}) \cdot (\frac{12}{5})}
  4. Use Tangent Addition Formula: Simplify the numerator and the denominator separately.\newlineNumerator: (3512)+(125)=(35×5+12×1212×5)=(175+14460)=31960(\frac{35}{12}) + (\frac{12}{5}) = (\frac{35\times 5 + 12\times 12}{12\times 5}) = (\frac{175 + 144}{60}) = \frac{319}{60}\newlineDenominator: 1(3512)×(125)=1(35×1212×5)=1(35×1260)=17=61 - (\frac{35}{12}) \times (\frac{12}{5}) = 1 - (\frac{35\times 12}{12\times 5}) = 1 - (\frac{35\times 12}{60}) = 1 - 7 = -6
  5. Simplify Numerator and Denominator: Now, divide the numerator by the denominator to find tan(A+B)\tan(A+B).\newlinetan(A+B)=31960/(6)\tan(A+B) = \frac{319}{60} / (-6)\newlinetan(A+B)=31960×16\tan(A+B) = \frac{319}{60} \times -\frac{1}{6}\newlinetan(A+B)=319360\tan(A+B) = -\frac{319}{360}

More problems from Find trigonometric ratios using multiple identities