Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
sin A=(35)/(37) and 
cos B=(8)/(17) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If sinA=3537 \sin A=\frac{35}{37} and cosB=817 \cos B=\frac{8}{17} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If sinA=3537 \sin A=\frac{35}{37} and cosB=817 \cos B=\frac{8}{17} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Find Tangent Values: Use the sine and cosine values to find the corresponding tangent values for angles AA and BB using the identity tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}. For angle AA, we have sinA=3537\sin A = \frac{35}{37}. To find cosA\cos A, we use the Pythagorean identity sin2(A)+cos2(A)=1\sin^2(A) + \cos^2(A) = 1. cos2(A)=1sin2(A)\cos^2(A) = 1 - \sin^2(A) cos2(A)=1(3537)2\cos^2(A) = 1 - \left(\frac{35}{37}\right)^2 cos2(A)=112251369\cos^2(A) = 1 - \frac{1225}{1369} BB00 BB11 BB22 BB33 Now, BB44.
  2. Calculate Angle A: For angle B, we have cosB=817\cos B = \frac{8}{17}. To find sinB\sin B, we use the Pythagorean identity sin2(B)+cos2(B)=1\sin^2(B) + \cos^2(B) = 1. \newlinesin2(B)=1cos2(B)\sin^2(B) = 1 - \cos^2(B)\newlinesin2(B)=1(817)2\sin^2(B) = 1 - \left(\frac{8}{17}\right)^2\newlinesin2(B)=164289\sin^2(B) = 1 - \frac{64}{289}\newlinesin2(B)=28964289\sin^2(B) = \frac{289 - 64}{289}\newlinesin2(B)=225289\sin^2(B) = \frac{225}{289}\newlinesin(B)=225289\sin(B) = \sqrt{\frac{225}{289}}\newlinesin(B)=1517\sin(B) = \frac{15}{17}\newlineNow, sinB\sin B00.
  3. Calculate Angle B: Use the angle sum identity for tangent to find tan(A+B)\tan(A+B):tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}Substitute the values of tanA\tan A and tanB\tan B into the formula:tan(A+B)=3512+1581(3512158)\tan(A+B) = \frac{\frac{35}{12} + \frac{15}{8}}{1 - (\frac{35}{12} \cdot \frac{15}{8})}
  4. Use Angle Sum Identity: Simplify the numerator and the denominator separately:\newlinetan(A+B)=(3512)(22)+(158)(33)1(3512158)\tan(A+B) = \frac{(\frac{35}{12}) \cdot (\frac{2}{2}) + (\frac{15}{8}) \cdot (\frac{3}{3})}{1 - (\frac{35}{12} \cdot \frac{15}{8})}\newlinetan(A+B)=7024+4524152596\tan(A+B) = \frac{\frac{70}{24} + \frac{45}{24}}{1 - \frac{525}{96}}\newlinetan(A+B)=11524152596\tan(A+B) = \frac{\frac{115}{24}}{1 - \frac{525}{96}}
  5. Simplify Numerator and Denominator: Simplify the denominator further: \newlinetan(A+B)=11524/(969652596)\tan(A+B) = \frac{115}{24} / \left(\frac{96}{96} - \frac{525}{96}\right)\newlinetan(A+B)=11524/(9652596)\tan(A+B) = \frac{115}{24} / \left(\frac{96 - 525}{96}\right)\newlinetan(A+B)=11524/(42996)\tan(A+B) = \frac{115}{24} / \left(-\frac{429}{96}\right)
  6. Simplify Denominator: Simplify the entire expression by multiplying the numerator by the reciprocal of the denominator:\newlinetan(A+B)=11524×96429\tan(A+B) = \frac{115}{24} \times \frac{96}{-429}\newlineSimplify the fraction by canceling common factors:\newlinetan(A+B)=115×4429\tan(A+B) = \frac{115 \times 4}{-429}\newlinetan(A+B)=460429\tan(A+B) = \frac{460}{-429}
  7. Final Simplification: Reduce the fraction to its simplest form: tan(A+B)=460429\tan(A+B) = -\frac{460}{429}

More problems from Find trigonometric ratios using multiple identities