Q. If sinA=3735 and cosB=178 and angles A and B are in Quadrant I, find the value of tan(A+B).Answer:
Find Tangent Values: Use the sine and cosine values to find the corresponding tangent values for angles A and B using the identity tan(θ)=cos(θ)sin(θ). For angle A, we have sinA=3735. To find cosA, we use the Pythagorean identity sin2(A)+cos2(A)=1. cos2(A)=1−sin2(A)cos2(A)=1−(3735)2cos2(A)=1−13691225B0B1B2B3 Now, B4.
Calculate Angle A: For angle B, we have cosB=178. To find sinB, we use the Pythagorean identity sin2(B)+cos2(B)=1. sin2(B)=1−cos2(B)sin2(B)=1−(178)2sin2(B)=1−28964sin2(B)=289289−64sin2(B)=289225sin(B)=289225sin(B)=1715Now, sinB0.
Calculate Angle B: Use the angle sum identity for tangent to find tan(A+B):tan(A+B)=1−tanA⋅tanBtanA+tanBSubstitute the values of tanA and tanB into the formula:tan(A+B)=1−(1235⋅815)1235+815
Use Angle Sum Identity: Simplify the numerator and the denominator separately:tan(A+B)=1−(1235⋅815)(1235)⋅(22)+(815)⋅(33)tan(A+B)=1−965252470+2445tan(A+B)=1−9652524115
Simplify Numerator and Denominator: Simplify the denominator further: tan(A+B)=24115/(9696−96525)tan(A+B)=24115/(9696−525)tan(A+B)=24115/(−96429)
Simplify Denominator: Simplify the entire expression by multiplying the numerator by the reciprocal of the denominator:tan(A+B)=24115×−42996Simplify the fraction by canceling common factors:tan(A+B)=−429115×4tan(A+B)=−429460
Final Simplification: Reduce the fraction to its simplest form: tan(A+B)=−429460
More problems from Find trigonometric ratios using multiple identities