Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
cos A=(35)/(37) and 
sin B=(28)/(53) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If cosA=3537 \cos A=\frac{35}{37} and sinB=2853 \sin B=\frac{28}{53} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If cosA=3537 \cos A=\frac{35}{37} and sinB=2853 \sin B=\frac{28}{53} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Find sinA\sin A and cosB\cos B: Use the given values to find sinA\sin A and cosB\cos B. Since cosA=3537\cos A = \frac{35}{37}, we can use the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1 to find sinA\sin A. sin2A=1cos2A\sin^2 A = 1 - \cos^2 A sin2A=1(3537)2\sin^2 A = 1 - \left(\frac{35}{37}\right)^2 sin2A=112251369\sin^2 A = 1 - \frac{1225}{1369} cosB\cos B00 cosB\cos B11 cosB\cos B22 cosB\cos B33
  2. Find cosB\cos B using sinB\sin B: Similarly, find cosB\cos B using sinB=2853\sin B = \frac{28}{53}.
    cos2B=1sin2B\cos^2 B = 1 - \sin^2 B
    cos2B=1(2853)2\cos^2 B = 1 - \left(\frac{28}{53}\right)^2
    cos2B=17842809\cos^2 B = 1 - \frac{784}{2809}
    cos2B=280928097842809\cos^2 B = \frac{2809}{2809} - \frac{784}{2809}
    cos2B=20252809\cos^2 B = \frac{2025}{2809}
    cosB=20252809\cos B = \sqrt{\frac{2025}{2809}}
    sinB\sin B00
  3. Use angle sum identity for tangent: Use the angle sum identity for tangent to find tan(A+B)\tan(A+B).tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}Since tanA=sinAcosA\tan A = \frac{\sin A}{\cos A} and tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}, we can substitute the values we found.tanA=12/3735/37=1235\tan A = \frac{12/37}{35/37} = \frac{12}{35}tanB=28/5345/53=2845\tan B = \frac{28/53}{45/53} = \frac{28}{45}tan(A+B)=1235+28451(12352845)\tan(A+B) = \frac{\frac{12}{35} + \frac{28}{45}}{1 - \left(\frac{12}{35} \cdot \frac{28}{45}\right)}
  4. Simplify expression for tan(A+B)\tan(A+B): Simplify the expression for tan(A+B)\tan(A+B).tan(A+B)=1235+2845\tan(A+B) = \frac{12}{35} + \frac{28}{45} / 1(12352845)1 - \left(\frac{12}{35} \cdot \frac{28}{45}\right)To add the fractions, find a common denominator, which is 354535\cdot45.tan(A+B)=(1245)+(2835)3545(1228)\tan(A+B) = \frac{(12\cdot45) + (28\cdot35)}{35\cdot45 - (12\cdot28)}tan(A+B)=540+9801575336\tan(A+B) = \frac{540 + 980}{1575 - 336}tan(A+B)=15201239\tan(A+B) = \frac{1520}{1239}
  5. Check for simplification: Check for any possible simplification of the fraction.\newlineThe numerator and denominator of 15201239\frac{1520}{1239} do not have any common factors other than 11, so the fraction is already in its simplest form.

More problems from Find trigonometric ratios using multiple identities