Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
sin A=(40)/(41) and 
cos B=(20)/(29) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If sinA=4041 \sin A=\frac{40}{41} and cosB=2029 \cos B=\frac{20}{29} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If sinA=4041 \sin A=\frac{40}{41} and cosB=2029 \cos B=\frac{20}{29} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Find cos(A)\cos(A): Use the Pythagorean identity to find cos(A)\cos(A). Since sin(A)=4041\sin(A) = \frac{40}{41} and AA is in Quadrant I, we can use the Pythagorean identity sin2(A)+cos2(A)=1\sin^2(A) + \cos^2(A) = 1 to find cos(A)\cos(A). cos2(A)=1sin2(A)\cos^2(A) = 1 - \sin^2(A) cos2(A)=1(4041)2\cos^2(A) = 1 - \left(\frac{40}{41}\right)^2 cos2(A)=116001681\cos^2(A) = 1 - \frac{1600}{1681} cos2(A)=1681168116001681\cos^2(A) = \frac{1681}{1681} - \frac{1600}{1681} cos(A)\cos(A)00 cos(A)\cos(A)11 cos(A)\cos(A)22
  2. Find sin(B)\sin(B): Use the Pythagorean identity to find sin(B)\sin(B).\newlineSince cos(B)=2029\cos(B) = \frac{20}{29} and BB is in Quadrant I, we can use the Pythagorean identity sin2(B)+cos2(B)=1\sin^2(B) + \cos^2(B) = 1 to find sin(B)\sin(B).\newlinesin2(B)=1cos2(B)\sin^2(B) = 1 - \cos^2(B)\newlinesin2(B)=1(2029)2\sin^2(B) = 1 - \left(\frac{20}{29}\right)^2\newlinesin2(B)=1400841\sin^2(B) = 1 - \frac{400}{841}\newlinesin2(B)=841841400841\sin^2(B) = \frac{841}{841} - \frac{400}{841}\newlinesin(B)\sin(B)00\newlinesin(B)\sin(B)11\newlinesin(B)\sin(B)22
  3. Find tan(AB)\tan(A-B): Use the angle subtraction formula for tangent to find tan(AB)\tan(A-B). The formula for tan(AB)\tan(A-B) is tan(A)tan(B)1+tan(A)tan(B)\frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}. We already have sin(A)\sin(A) and cos(A)\cos(A), and sin(B)\sin(B) and cos(B)\cos(B), so we can find tan(A)\tan(A) and tan(B)\tan(B). tan(AB)\tan(A-B)00 tan(AB)\tan(A-B)11 tan(AB)\tan(A-B)22 tan(AB)\tan(A-B)33 tan(AB)\tan(A-B)44 tan(AB)\tan(A-B)55 Now we can find tan(AB)\tan(A-B). tan(AB)\tan(A-B)77 tan(AB)\tan(A-B)88
  4. Find tan(AB)\tan(A-B): Use the angle subtraction formula for tangent to find tan(AB)\tan(A-B). The formula for tan(AB)\tan(A-B) is tan(A)tan(B)1+tan(A)tan(B)\frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}. We already have sin(A)\sin(A) and cos(A)\cos(A), and sin(B)\sin(B) and cos(B)\cos(B), so we can find tan(A)\tan(A) and tan(B)\tan(B). tan(AB)\tan(A-B)00 tan(AB)\tan(A-B)11 tan(AB)\tan(A-B)22 tan(AB)\tan(A-B)33 tan(AB)\tan(A-B)44 tan(AB)\tan(A-B)55 Now we can find tan(AB)\tan(A-B). tan(AB)\tan(A-B)77 tan(AB)\tan(A-B)88Simplify the expression for tan(AB)\tan(A-B). tan(AB)\tan(A-B)88 To subtract the fractions, find a common denominator. Common denominator for tan(AB)\tan(A-B)11 and tan(AB)\tan(A-B)22 is tan(AB)\tan(A-B)33. tan(AB)\tan(A-B)44 tan(AB)\tan(A-B)55 tan(AB)\tan(A-B)66 tan(AB)\tan(A-B)77 Now simplify the expression. tan(AB)\tan(A-B)88 tan(AB)\tan(A-B)99

More problems from Find trigonometric ratios using multiple identities