Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan A=(40)/(9) and 
sin B=(15)/(17) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If tanA=409 \tan A=\frac{40}{9} and sinB=1517 \sin B=\frac{15}{17} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If tanA=409 \tan A=\frac{40}{9} and sinB=1517 \sin B=\frac{15}{17} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Use tan(A+B)\tan(A+B) formula: Use the formula for tan(A+B)\tan(A+B), which is tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}. We know tanA=409\tan A = \frac{40}{9}. We need to find tanB\tan B using sinB=1517\sin B = \frac{15}{17}.
  2. Find tanB\tan B using sinB\sin B: To find tanB\tan B, we need to find cosB\cos B. Since sin2B+cos2B=1\sin^2 B + \cos^2 B = 1, we can solve for cosB\cos B.
    cosB=1sin2B\cos B = \sqrt{1 - \sin^2 B}
    cosB=1(1517)2\cos B = \sqrt{1 - (\frac{15}{17})^2}
    cosB=1225289\cos B = \sqrt{1 - \frac{225}{289}}
    cosB=289225289\cos B = \sqrt{\frac{289 - 225}{289}}
    sinB\sin B00
    sinB\sin B11
  3. Find cosB\cos B: Now that we have cosB\cos B, we can find tanB\tan B using the identity tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}.\newlinetanB=1517817\tan B = \frac{\frac{15}{17}}{\frac{8}{17}}\newlinetanB=158\tan B = \frac{15}{8}
  4. Find tanB\tan B: Substitute the values of tanA\tan A and tanB\tan B into the tan(A+B)\tan(A+B) formula.\newlinetan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\newlinetan(A+B)=(409)+(158)1(409)(158)\tan(A+B) = \frac{(\frac{40}{9}) + (\frac{15}{8})}{1 - (\frac{40}{9}) \cdot (\frac{15}{8})}
  5. Substitute values into formula: Calculate the numerator and denominator separately.\newlineNumerator: (409)+(158)=(32072)+(13572)=(320+13572)=45572(\frac{40}{9}) + (\frac{15}{8}) = (\frac{320}{72}) + (\frac{135}{72}) = (\frac{320 + 135}{72}) = \frac{455}{72}\newlineDenominator: 1(409)×(158)=1(60072)=(7272)(60072)=528721 - (\frac{40}{9}) \times (\frac{15}{8}) = 1 - (\frac{600}{72}) = (\frac{72}{72}) - (\frac{600}{72}) = \frac{-528}{72}
  6. Calculate numerator and denominator: Now, divide the numerator by the denominator to find tan(A+B)\tan(A+B).tan(A+B)=45572/52872\tan(A+B) = \frac{455}{72} / \frac{-528}{72}tan(A+B)=455528\tan(A+B) = \frac{455}{-528}tan(A+B)=455528\tan(A+B) = -\frac{455}{528}
  7. Divide numerator by denominator: Simplify the fraction to its lowest terms.\newlinetan(A+B)=455528\tan(A+B) = -\frac{455}{528} can be simplified by dividing both numerator and denominator by their greatest common divisor, which is 11 in this case.\newlinetan(A+B)=455528\tan(A+B) = -\frac{455}{528}

More problems from Find trigonometric ratios using multiple identities