Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
sin A=(6)/(sqrt61) and 
cos B=(1)/(sqrt2), and that angles 
A and 
B are both in Quadrant I, find the exact value of 
cos(A-B), in simplest radical form.
Answer:

Given that sinA=661 \sin A=\frac{6}{\sqrt{61}} and cosB=12 \cos B=\frac{1}{\sqrt{2}} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(AB) \cos (A-B) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that sinA=661 \sin A=\frac{6}{\sqrt{61}} and cosB=12 \cos B=\frac{1}{\sqrt{2}} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(AB) \cos (A-B) , in simplest radical form.\newlineAnswer:
  1. Find cos(AB)\cos(A-B): To find cos(AB)\cos(A-B), we can use the cosine difference identity: cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B). First, we need to find cos(A)\cos(A) and sin(B)\sin(B). Since sinA=661\sin A = \frac{6}{\sqrt{61}}, we can find cos(A)\cos(A) using the Pythagorean identity sin2(A)+cos2(A)=1\sin^2(A) + \cos^2(A) = 1.
  2. Calculate cos(A)\cos(A): Calculate cos(A)\cos(A) using the Pythagorean identity:\newlinecos2(A)=1sin2(A)\cos^2(A) = 1 - \sin^2(A)\newlinecos2(A)=1(661)2\cos^2(A) = 1 - (\frac{6}{\sqrt{61}})^2\newlinecos2(A)=13661\cos^2(A) = 1 - \frac{36}{61}\newlinecos2(A)=61613661\cos^2(A) = \frac{61}{61} - \frac{36}{61}\newlinecos2(A)=2561\cos^2(A) = \frac{25}{61}\newlinecos(A)=2561\cos(A) = \sqrt{\frac{25}{61}}\newlinecos(A)=561\cos(A) = \frac{5}{\sqrt{61}}\newlineSince AA is in Quadrant I, cos(A)\cos(A) is positive.
  3. Find sin(B)\sin(B): Next, we need to find sin(B)\sin(B). We know that cosB=12\cos B = \frac{1}{\sqrt{2}}, and using the Pythagorean identity sin2(B)+cos2(B)=1\sin^2(B) + \cos^2(B) = 1, we can find sin(B)\sin(B).\newlinesin2(B)=1cos2(B)\sin^2(B) = 1 - \cos^2(B)\newlinesin2(B)=1(12)2\sin^2(B) = 1 - \left(\frac{1}{\sqrt{2}}\right)^2\newlinesin2(B)=112\sin^2(B) = 1 - \frac{1}{2}\newlinesin2(B)=12\sin^2(B) = \frac{1}{2}\newlinesin(B)=12\sin(B) = \sqrt{\frac{1}{2}}\newlinesin(B)\sin(B)00\newlineSince B is in Quadrant I, sin(B)\sin(B) is also positive.
  4. Use cosine difference identity: Now that we have cos(A)\cos(A) and sin(B)\sin(B), we can use the cosine difference identity to find cos(AB)\cos(A-B):cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B)cos(AB)=(561)(12)+(661)(12)\cos(A-B) = \left(\frac{5}{\sqrt{61}}\right)\left(\frac{1}{\sqrt{2}}\right) + \left(\frac{6}{\sqrt{61}}\right)\left(\frac{1}{\sqrt{2}}\right)cos(AB)=(5122)+(6122)\cos(A-B) = \left(\frac{5}{\sqrt{122}}\right) + \left(\frac{6}{\sqrt{122}}\right)cos(AB)=5+6122\cos(A-B) = \frac{5 + 6}{\sqrt{122}}cos(AB)=11122\cos(A-B) = \frac{11}{\sqrt{122}}
  5. Rationalize the denominator: To express the answer in simplest radical form, we rationalize the denominator:\newlinecos(AB)=11122×122122\cos(A-B) = \frac{11}{\sqrt{122}} \times \frac{\sqrt{122}}{\sqrt{122}}\newlinecos(AB)=11122122\cos(A-B) = \frac{11\sqrt{122}}{122}

More problems from Find trigonometric ratios using multiple identities