Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
tan x=(1)/(sqrt3) and 
sin y=(sqrt28)/(6), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
cos(x+y), in simplest radical form.
Answer:

Given that tanx=13 \tan x=\frac{1}{\sqrt{3}} and siny=286 \sin y=\frac{\sqrt{28}}{6} , and that angles x x and y y are both in Quadrant I, find the exact value of cos(x+y) \cos (x+y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that tanx=13 \tan x=\frac{1}{\sqrt{3}} and siny=286 \sin y=\frac{\sqrt{28}}{6} , and that angles x x and y y are both in Quadrant I, find the exact value of cos(x+y) \cos (x+y) , in simplest radical form.\newlineAnswer:
  1. Find tanx\tan x: We know that tanx=13\tan x = \frac{1}{\sqrt{3}}. Since xx is in Quadrant I, both sine and cosine are positive. We can find cosx\cos x using the Pythagorean identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, and the fact that tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}.
  2. Express sinx\sin x: First, let's express sinx\sin x in terms of tanx\tan x. We have tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}, so sinx=tanxcosx\sin x = \tan x \cdot \cos x. We know tanx=13\tan x = \frac{1}{\sqrt{3}}, so sinx=(13)cosx\sin x = \left(\frac{1}{\sqrt{3}}\right) \cdot \cos x.
  3. Use Pythagorean identity: Now, we use the Pythagorean identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1. Substituting sinx\sin x with (1/3)cosx(1/\sqrt{3}) \cdot \cos x, we get ((1/3)cosx)2+cos2x=1((1/\sqrt{3}) \cdot \cos x)^2 + \cos^2 x = 1.
  4. Solve for cosx\cos x: Simplifying the equation, we have (1/3)cos2x+cos2x=1(1/3) \cdot \cos^2 x + \cos^2 x = 1. Combining like terms, we get (1/3+1)cos2x=1(1/3 + 1) \cdot \cos^2 x = 1, which simplifies to (4/3)cos2x=1(4/3) \cdot \cos^2 x = 1.
  5. Find cosy\cos y: To find cosx\cos x, we solve for cos2x\cos^2 x by multiplying both sides by 34\frac{3}{4}, which gives us cos2x=(34)\cos^2 x = \left(\frac{3}{4}\right). Taking the square root of both sides, we get cosx=34=32\cos x = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}, since xx is in Quadrant I and cosine is positive.
  6. Substitute siny\sin y: Next, we need to find cosy\cos y. We are given siny=28/6\sin y = \sqrt{28}/6. Using the Pythagorean identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1, we can find cosy\cos y.
  7. Simplify the equation: Substitute siny\sin y with 28/6\sqrt{28}/6 into the identity: (28/6)2+cos2y=1(\sqrt{28}/6)^2 + \cos^2 y = 1. Simplifying, we get (28/36)+cos2y=1(28/36) + \cos^2 y = 1.
  8. Find cosy\cos y: Subtracting 2836\frac{28}{36} from both sides, we get cos2y=12836\cos^2 y = 1 - \frac{28}{36}. Simplifying further, we get cos2y=36362836=836\cos^2 y = \frac{36}{36} - \frac{28}{36} = \frac{8}{36}.
  9. Use cosine sum formula: Taking the square root of both sides to find cosy\cos y, we get cosy=836=86\cos y = \sqrt{\frac{8}{36}} = \frac{\sqrt{8}}{6}. Since yy is in Quadrant I, cosy\cos y is positive, so cosy=86=246=226=23\cos y = \frac{\sqrt{8}}{6} = \frac{\sqrt{2*4}}{6} = \frac{2*\sqrt{2}}{6} = \frac{\sqrt{2}}{3}.
  10. Find sinx\sin x: Now we have both cosx=3/2\cos x = \sqrt{3}/2 and cosy=2/3\cos y = \sqrt{2}/3. We can use the cosine sum formula to find cos(x+y)\cos(x+y): cos(x+y)=cosxcosysinxsiny\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y.
  11. Substitute all values: We already have cosx\cos x and cosy\cos y. We need to find sinx\sin x, which we can get from tanx=13\tan x = \frac{1}{\sqrt{3}} and cosx=32\cos x = \frac{\sqrt{3}}{2}. Since tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}, we have sinx=tanxcosx=(13)(32)=12\sin x = \tan x \cdot \cos x = \left(\frac{1}{\sqrt{3}}\right) \cdot \left(\frac{\sqrt{3}}{2}\right) = \frac{1}{2}.
  12. Simplify the expression: We already have siny=286\sin y = \frac{\sqrt{28}}{6}. Now we can substitute all values into the cosine sum formula: cos(x+y)=(32)(23)(12)(286)\cos(x+y) = \left(\frac{\sqrt{3}}{2}\right) \cdot \left(\frac{\sqrt{2}}{3}\right) - \left(\frac{1}{2}\right) \cdot \left(\frac{\sqrt{28}}{6}\right).
  13. Combine the terms: Simplifying the expression, we get cos(x+y)=(32)/(23)(128)/(26)=(6/6)(28/12)\cos(x+y) = (\sqrt{3}\cdot\sqrt{2})/(2\cdot3) - (1\cdot\sqrt{28})/(2\cdot6) = (\sqrt{6}/6) - (\sqrt{28}/12).
  14. Simplify the numerator: To combine the terms, we need a common denominator. Multiplying the first term by 22\frac{2}{2}, we get 2612\frac{2\sqrt{6}}{12} - 2812\frac{\sqrt{28}}{12} = 262812\frac{2\sqrt{6} - \sqrt{28}}{12}.
  15. Final simplification: Simplifying the numerator, we get (264×7)/12=(2627)/12(2\sqrt{6} - \sqrt{4\times7})/12 = (2\sqrt{6} - 2\sqrt{7})/12.
  16. Final simplification: Simplifying the numerator, we get (264×7)/12=(2627)/12(2\sqrt{6} - \sqrt{4\times7})/12 = (2\sqrt{6} - 2\sqrt{7})/12.Finally, we can simplify the expression by dividing both numerator and denominator by 22, which gives us (67)/6(\sqrt{6} - \sqrt{7})/6 as the exact value of cos(x+y)\cos(x+y) in simplest radical form.

More problems from Find trigonometric ratios using multiple identities