Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan(x)=(5)/(6) (in Quadrant-I), find 
cos(2x)=

If tan(x)=56 \tan (x)=\frac{5}{6} (in Quadrant-I), find \newlinecos(2x)= \cos (2 x)=

Full solution

Q. If tan(x)=56 \tan (x)=\frac{5}{6} (in Quadrant-I), find \newlinecos(2x)= \cos (2 x)=
  1. Use cos(2x)\cos(2x) identity: Use the identity for cos(2x)\cos(2x) which is cos(2x)=12sin2(x)\cos(2x) = 1 - 2\sin^2(x). First, find sin(x)\sin(x) using tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)}.
  2. Calculate sin(x)\sin(x) and \cos(x): Calculate \(\sin(x) and cos(x)\cos(x) using k=161k = \frac{1}{\sqrt{61}}.
  3. Substitute sin(x)\sin(x) into identity: Substitute sin(x)\sin(x) into the cos(2x)\cos(2x) identity.

More problems from Find trigonometric ratios using multiple identities