Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
sin A=(11)/(61) and 
cos B=(20)/(29) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If sinA=1161 \sin A=\frac{11}{61} and cosB=2029 \cos B=\frac{20}{29} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If sinA=1161 \sin A=\frac{11}{61} and cosB=2029 \cos B=\frac{20}{29} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Use Pythagorean identity: Use the Pythagorean identity to find cos(A)\cos(A) and sin(B)\sin(B). Since sinA=1161\sin A = \frac{11}{61}, we can find cosA\cos A using the identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1. cos2A=1sin2A\cos^2 A = 1 - \sin^2 A cos2A=1(1161)2\cos^2 A = 1 - \left(\frac{11}{61}\right)^2 cos2A=11213721\cos^2 A = 1 - \frac{121}{3721} cos2A=372137211213721\cos^2 A = \frac{3721}{3721} - \frac{121}{3721} cos2A=36003721\cos^2 A = \frac{3600}{3721} sin(B)\sin(B)00 sin(B)\sin(B)11

More problems from Find trigonometric ratios using multiple identities