Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
sin A=(sqrt22)/(5) and 
sin B=(sqrt7)/(3), and that angles 
A and 
B are both in Quadrant I, find the exact value of 
cos(A-B), in simplest radical form.
Answer:

Given that sinA=225 \sin A=\frac{\sqrt{22}}{5} and sinB=73 \sin B=\frac{\sqrt{7}}{3} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(AB) \cos (A-B) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that sinA=225 \sin A=\frac{\sqrt{22}}{5} and sinB=73 \sin B=\frac{\sqrt{7}}{3} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(AB) \cos (A-B) , in simplest radical form.\newlineAnswer:
  1. Apply cosine difference identity: Use the cosine difference identity: cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B).
  2. Find cos(A)\cos(A) and cos(B)\cos(B): Find cos(A)\cos(A) and cos(B)\cos(B) using the Pythagorean identity: cos2(A)=1sin2(A)\cos^2(A) = 1 - \sin^2(A) and cos2(B)=1sin2(B)\cos^2(B) = 1 - \sin^2(B).
  3. Calculate cos2(A)\cos^2(A): Calculate cos2(A)\cos^2(A): cos2(A)=1sin2(A)=1(22/5)2=1(22/25)=(25/25)(22/25)=3/25\cos^2(A) = 1 - \sin^2(A) = 1 - (\sqrt{22}/5)^2 = 1 - (22/25) = (25/25) - (22/25) = 3/25.
  4. Calculate cos(A)\cos(A): Calculate cos(A)\cos(A): Since AA is in Quadrant I, cos(A)\cos(A) is positive. Therefore, cos(A)=325=35\cos(A) = \sqrt{\frac{3}{25}} = \frac{\sqrt{3}}{5}.
  5. Calculate cos2(B)\cos^2(B): Calculate cos2(B)\cos^2(B): cos2(B)=1sin2(B)=1(7/3)2=1(7/9)=(9/9)(7/9)=2/9\cos^2(B) = 1 - \sin^2(B) = 1 - (\sqrt{7}/3)^2 = 1 - (7/9) = (9/9) - (7/9) = 2/9.
  6. Calculate cos(B)\cos(B): Calculate cos(B)\cos(B): Since BB is in Quadrant I, cos(B)\cos(B) is positive. Therefore, cos(B)=29=23\cos(B) = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3}.
  7. Substitute values into identity: Substitute the values of cos(A)\cos(A), cos(B)\cos(B), sin(A)\sin(A), and sin(B)\sin(B) into the cosine difference identity: cos(AB)=(35)(23)+(225)(73)\cos(A-B) = \left(\frac{\sqrt{3}}{5}\right)\left(\frac{\sqrt{2}}{3}\right) + \left(\frac{\sqrt{22}}{5}\right)\left(\frac{\sqrt{7}}{3}\right).
  8. Simplify the expression: Simplify the expression: cos(AB)=615+15415\cos(A-B) = \frac{\sqrt{6}}{15} + \frac{\sqrt{154}}{15}.
  9. Combine the terms: Combine the terms: cos(AB)=(6+154)/15\cos(A-B) = (\sqrt{6} + \sqrt{154})/15.

More problems from Find trigonometric ratios using multiple identities