Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h be a differentiable function such that 
h(-5)=10 and 
h^(')(x)=2-sqrt(e^(x)+2x^(2)).
What is the value of 
h(1) ? Use a graphing calculator and round your answer to three decimal places.

Let h h be a differentiable function such that h(5)=10 h(-5)=10 and h(x)=2ex+2x2 h^{\prime}(x)=2-\sqrt{e^{x}+2 x^{2}} .\newlineWhat is the value of h(1) h(1) ? Use a graphing calculator and round your answer to three decimal places.

Full solution

Q. Let h h be a differentiable function such that h(5)=10 h(-5)=10 and h(x)=2ex+2x2 h^{\prime}(x)=2-\sqrt{e^{x}+2 x^{2}} .\newlineWhat is the value of h(1) h(1) ? Use a graphing calculator and round your answer to three decimal places.
  1. Find h(1)h(1): To find h(1)h(1), we need to integrate h(x)h'(x) from 5-5 to 11 and add it to h(5)h(-5).
  2. Calculate h(1)h(1): h(1)=h(5)+51(2ex+2x2)dxh(1) = h(-5) + \int_{-5}^{1} (2 - \sqrt{e^x + 2x^2}) \, dx.
  3. Integrate function: Use a graphing calculator to integrate 2ex+2x22 - \sqrt{e^x + 2x^2} from 5-5 to 11.
  4. Add result to h(5)h(-5): After integrating, we add the result to h(5)h(-5), which is 1010.
  5. Calculate integral value: The graphing calculator gives the integral's value as approximately 4.237-4.237.
  6. Final calculation: h(1)=10+(4.237)h(1) = 10 + (-4.237).
  7. Approximate h(1)h(1): h(1)104.237h(1) \approx 10 - 4.237.
  8. Approximate h(1)h(1): h(1)104.237h(1) \approx 10 - 4.237.h(1)5.763h(1) \approx 5.763, rounded to three decimal places.

More problems from Find trigonometric ratios using multiple identities