Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
cos A=(21)/(29) and 
tan B=(9)/(40) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If cosA=2129 \cos A=\frac{21}{29} and tanB=940 \tan B=\frac{9}{40} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If cosA=2129 \cos A=\frac{21}{29} and tanB=940 \tan B=\frac{9}{40} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Find tanA\tan A: Use the formula for tan(AB)\tan(A-B), which is tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}. First, we need to find tanA\tan A. Since we know cosA=2129\cos A = \frac{21}{29} and AA is in Quadrant I, we can find sinA\sin A using the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1. sin2A=1cos2A\sin^2 A = 1 - \cos^2 A sin2A=1(2129)2\sin^2 A = 1 - \left(\frac{21}{29}\right)^2 tan(AB)\tan(A-B)00 tan(AB)\tan(A-B)11 tan(AB)\tan(A-B)22 tan(AB)\tan(A-B)33 tan(AB)\tan(A-B)44 Now, tan(AB)\tan(A-B)55 tan(AB)\tan(A-B)66 tan(AB)\tan(A-B)77
  2. Substitute values into formula: Now we have tanA=2021\tan A = \frac{20}{21} and tanB=940\tan B = \frac{9}{40}. We can substitute these values into the tan(AB)\tan(A-B) formula.\newlinetan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}\newlinetan(AB)=20219401+(2021940)\tan(A-B) = \frac{\frac{20}{21} - \frac{9}{40}}{1 + (\frac{20}{21} \cdot \frac{9}{40})}
  3. Simplify numerator and denominator: Simplify the numerator and the denominator separately.\newlineFor the numerator:\newlinetanAtanB=2021940\tan A - \tan B = \frac{20}{21} - \frac{9}{40}\newlineTo subtract these fractions, find a common denominator, which is 21×40=84021\times40 = 840.\newline(2021940)=(20×4021×40)(9×2140×21)(\frac{20}{21} - \frac{9}{40}) = (\frac{20\times40}{21\times40}) - (\frac{9\times21}{40\times21})\newline(2021940)=(800840)(189840)(\frac{20}{21} - \frac{9}{40}) = (\frac{800}{840}) - (\frac{189}{840})\newline(2021940)=800189840(\frac{20}{21} - \frac{9}{40}) = \frac{800 - 189}{840}\newline(2021940)=611840(\frac{20}{21} - \frac{9}{40}) = \frac{611}{840}\newlineFor the denominator:\newline1+tanA×tanB=1+(2021×940)1 + \tan A \times \tan B = 1 + (\frac{20}{21} \times \frac{9}{40})\newline1+tanA×tanB=1+(180840)1 + \tan A \times \tan B = 1 + (\frac{180}{840})\newline1+tanA×tanB=840840+1808401 + \tan A \times \tan B = \frac{840}{840} + \frac{180}{840}\newline1+tanA×tanB=10208401 + \tan A \times \tan B = \frac{1020}{840}
  4. Divide to find tan(AB)\tan(A-B): Now, divide the numerator by the denominator to find tan(AB)\tan(A-B).tan(AB)=611840/1020840\tan(A-B) = \frac{611}{840} / \frac{1020}{840}When dividing by a fraction, multiply by the reciprocal of the divisor.tan(AB)=611840×8401020\tan(A-B) = \frac{611}{840} \times \frac{840}{1020}Simplify by canceling out the common factor of 840840.tan(AB)=6111020\tan(A-B) = \frac{611}{1020}Reduce the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 11.tan(AB)=6111020\tan(A-B) = \frac{611}{1020}

More problems from Find trigonometric ratios using multiple identities