Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
tan x=6 and 
cos y=(3)/(sqrt13), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
cos(x+y), in simplest radical form.
Answer:

Given that tanx=6 \tan x=6 and cosy=313 \cos y=\frac{3}{\sqrt{13}} , and that angles x x and y y are both in Quadrant I, find the exact value of cos(x+y) \cos (x+y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that tanx=6 \tan x=6 and cosy=313 \cos y=\frac{3}{\sqrt{13}} , and that angles x x and y y are both in Quadrant I, find the exact value of cos(x+y) \cos (x+y) , in simplest radical form.\newlineAnswer:
  1. Given Information: We are given tanx=6\tan x = 6 and cosy=313\cos y = \frac{3}{\sqrt{13}}. Since xx and yy are in Quadrant I, all trigonometric functions are positive. We need to find cos(x+y)\cos(x+y). To do this, we will use the cosine addition formula: cos(x+y)=cosxcosysinxsiny\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y. First, we need to find cosx\cos x and siny\sin y.
  2. Finding cos x: To find cosx\cos x, we use the identity 1+tan2x=sec2x1 + \tan^2 x = \sec^2 x. Since tanx=6\tan x = 6, we have 1+62=sec2x1 + 6^2 = \sec^2 x, which simplifies to 1+36=sec2x1 + 36 = \sec^2 x, so sec2x=37\sec^2 x = 37. Therefore, secx=37\sec x = \sqrt{37}, and since secx\sec x is the reciprocal of cosx\cos x, we have cosx=137\cos x = \frac{1}{\sqrt{37}}.
  3. Finding siny\sin y: To find siny\sin y, we use the Pythagorean identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1. We know cosy=313\cos y = \frac{3}{\sqrt{13}}, so cos2y=(313)2=913\cos^2 y = \left(\frac{3}{\sqrt{13}}\right)^2 = \frac{9}{13}. Substituting into the identity, we get sin2y+913=1\sin^2 y + \frac{9}{13} = 1. Solving for sin2y\sin^2 y gives us sin2y=1913=413\sin^2 y = 1 - \frac{9}{13} = \frac{4}{13}. Taking the square root, we find siny=413=213\sin y = \sqrt{\frac{4}{13}} = \frac{2}{\sqrt{13}}.
  4. Substitute into Formula: Now that we have cosx=137\cos x = \frac{1}{\sqrt{37}} and siny=213\sin y = \frac{2}{\sqrt{13}}, we can substitute these into the cosine addition formula. cos(x+y)=(137)(313)(6)(213)\cos(x+y) = \left(\frac{1}{\sqrt{37}}\right) \cdot \left(\frac{3}{\sqrt{13}}\right) - (6) \cdot \left(\frac{2}{\sqrt{13}}\right). Simplifying this expression, we get cos(x+y)=3(3713)1213\cos(x+y) = \frac{3}{(\sqrt{37} \cdot \sqrt{13})} - \frac{12}{\sqrt{13}}.
  5. Combine Terms: To simplify the expression further, we find a common denominator. The common denominator for 37×13\sqrt{37} \times \sqrt{13} and 13\sqrt{13} is 37×13\sqrt{37} \times \sqrt{13}. So, we rewrite the expression as cos(x+y)=31337×13123737×13.\cos(x+y) = \frac{3\sqrt{13}}{37 \times 13} - \frac{12\sqrt{37}}{37 \times 13}.
  6. Simplify Denominator: Now we combine the terms over the common denominator: cos(x+y)=313123737×13\cos(x+y) = \frac{3\sqrt{13} - 12\sqrt{37}}{37 \times 13}. This is the simplified expression for cos(x+y)\cos(x+y) in radical form.
  7. Final Result: Finally, we simplify the denominator: 37×13=48137 \times 13 = 481. So, cos(x+y)=(3131237)/481\cos(x+y) = (3\sqrt{13} - 12\sqrt{37}) / 481. This is the exact value of cos(x+y)\cos(x+y) in simplest radical form.

More problems from Find trigonometric ratios using multiple identities