Q. Given that sinA=67 and tanB=3, and that angles A and B are both in Quadrant I, find the exact value of cos(A−B), in simplest radical form.Answer:
Find cosA: Use the Pythagorean identity to find cosA.Since sinA=67, we can use the identity sin2A+cos2A=1 to find cosA.cos2A=1−sin2Acos2A=1−(67)2cos2A=1−367cos2A=3636−367cos2A=3629cosA0cosA1
Find cosB: Use the identity 1+tan2B=sec2B to find cosB. Since tanB=3, we can find secB and then use the reciprocal identity to find cosB. sec2B=1+tan2Bsec2B=1+(3)2sec2B=1+3sec2B=41+tan2B=sec2B01+tan2B=sec2B11+tan2B=sec2B21+tan2B=sec2B3
Find cos(A−B): Use the cosine difference identity to find cos(A−B). The identity is cos(A−B)=cosA⋅cosB+sinA⋅sinB. cos(A−B)=629⋅21+67⋅23cos(A−B)=1229+127⋅3cos(A−B)=1229+1221cos(A−B)=1229+21
More problems from Find trigonometric ratios using multiple identities