Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
cos x=(4)/(5) and 
sin y=(sqrt8)/(3), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
sin(x+y), in simplest radical form.
Answer:

Given that cosx=45 \cos x=\frac{4}{5} and siny=83 \sin y=\frac{\sqrt{8}}{3} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(x+y) \sin (x+y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that cosx=45 \cos x=\frac{4}{5} and siny=83 \sin y=\frac{\sqrt{8}}{3} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(x+y) \sin (x+y) , in simplest radical form.\newlineAnswer:
  1. Apply Sine Addition Formula: Use the sine addition formula: sin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y). First, we need to find sin(x)\sin(x) and cos(y)\cos(y). Since cosx=45\cos x = \frac{4}{5} and xx is in Quadrant I, we can find sin(x)\sin(x) using the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1.
  2. Calculate sin(x)\sin(x): Calculate sin(x)\sin(x):
    sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x)
    sin2(x)=1(45)2\sin^2(x) = 1 - \left(\frac{4}{5}\right)^2
    sin2(x)=11625\sin^2(x) = 1 - \frac{16}{25}
    sin2(x)=25251625\sin^2(x) = \frac{25}{25} - \frac{16}{25}
    sin2(x)=925\sin^2(x) = \frac{9}{25}
    sin(x)=925\sin(x) = \sqrt{\frac{9}{25}}
    sin(x)=35\sin(x) = \frac{3}{5}
    Since xx is in Quadrant I, sin(x)\sin(x) is positive.
  3. Find cos(y)\cos(y): Now, find cos(y)\cos(y): We are given siny=8/3\sin y = \sqrt{8}/3. Using the Pythagorean identity again, cos2(y)+sin2(y)=1\cos^2(y) + \sin^2(y) = 1. cos2(y)=1sin2(y)\cos^2(y) = 1 - \sin^2(y) cos2(y)=1(8/3)2\cos^2(y) = 1 - (\sqrt{8}/3)^2 cos2(y)=18/9\cos^2(y) = 1 - 8/9 cos2(y)=(9/9)(8/9)\cos^2(y) = (9/9) - (8/9) cos2(y)=1/9\cos^2(y) = 1/9 cos(y)=1/9\cos(y) = \sqrt{1/9} cos(y)\cos(y)00 Since cos(y)\cos(y)11 is in Quadrant I, cos(y)\cos(y) is positive.
  4. Use Sine Addition Formula: Now that we have sin(x)=35\sin(x) = \frac{3}{5} and cos(y)=13\cos(y) = \frac{1}{3}, we can use the sine addition formula:\newlinesin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\newlinesin(x+y)=(35)(13)+(45)(83)\sin(x+y) = \left(\frac{3}{5}\right)\left(\frac{1}{3}\right) + \left(\frac{4}{5}\right)\left(\frac{\sqrt{8}}{3}\right)\newlinesin(x+y)=315+4815\sin(x+y) = \frac{3}{15} + \frac{4\sqrt{8}}{15}\newlinesin(x+y)=15+4815\sin(x+y) = \frac{1}{5} + \frac{4\sqrt{8}}{15}
  5. Combine Terms: Combine the terms to get the final answer:\newlinesin(x+y)=15(33)+4815\sin(x+y) = \frac{1}{5}\left(\frac{3}{3}\right) + \frac{4\sqrt{8}}{15}\newlinesin(x+y)=315+4815\sin(x+y) = \frac{3}{15} + \frac{4\sqrt{8}}{15}\newlinesin(x+y)=3+4815\sin(x+y) = \frac{3 + 4\sqrt{8}}{15}

More problems from Find trigonometric ratios using multiple identities