Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
sin A=(20)/(29) and 
cos B=(28)/(53) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If sinA=2029 \sin A=\frac{20}{29} and cosB=2853 \cos B=\frac{28}{53} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If sinA=2029 \sin A=\frac{20}{29} and cosB=2853 \cos B=\frac{28}{53} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Find Side Lengths: Use the sine and cosine values to find the lengths of the opposite and adjacent sides of the right triangles for angles AA and BB. For angle AA, sinA=oppositehypotenuse=2029\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{20}{29}, which means the opposite side is 2020 and the hypotenuse is 2929. For angle BB, cosB=adjacenthypotenuse=2853\cos B = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{28}{53}, which means the adjacent side is 2828 and the hypotenuse is 5353.
  2. Calculate Missing Side: Calculate the missing side (adjacent for angle AA and opposite for angle BB) using the Pythagorean theorem.\newlineFor angle AA, adjacent side = hypotenuse2opposite2=292202=841400=441=21\sqrt{\text{hypotenuse}^2 - \text{opposite}^2} = \sqrt{29^2 - 20^2} = \sqrt{841 - 400} = \sqrt{441} = 21.\newlineFor angle BB, opposite side = hypotenuse2adjacent2=532282=2809784=2025=45\sqrt{\text{hypotenuse}^2 - \text{adjacent}^2} = \sqrt{53^2 - 28^2} = \sqrt{2809 - 784} = \sqrt{2025} = 45.
  3. Find Tangents: Now that we have the lengths of all sides of the right triangles for angles AA and BB, we can find tanA\tan A and tanB\tan B.\newlinetanA=oppositeadjacent\tan A = \frac{\text{opposite}}{\text{adjacent}} for angle A=2021A = \frac{20}{21}.\newlinetanB=oppositeadjacent\tan B = \frac{\text{opposite}}{\text{adjacent}} for angle B=4528B = \frac{45}{28}.
  4. Use Angle Difference Identity: Use the angle difference identity for tangent to find tan(AB)\tan(A-B):tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}.Substitute the values of tanA\tan A and tanB\tan B into the formula:tan(AB)=202145281+(20214528)\tan(A-B) = \frac{\frac{20}{21} - \frac{45}{28}}{1 + \left(\frac{20}{21} \cdot \frac{45}{28}\right)}.
  5. Simplify Expression: Simplify the expression for tan(AB)\tan(A-B):tan(AB)=((20×2845×21)(21×28))/(1+(20×45)(21×28)).\tan(A-B) = \left(\frac{(20\times 28 - 45\times 21)}{(21\times 28)}\right) / \left(1 + \frac{(20\times 45)}{(21\times 28)}\right).tan(AB)=((560945)(588))/(1+(900)(588)).\tan(A-B) = \left(\frac{(560 - 945)}{(588)}\right) / \left(1 + \frac{(900)}{(588)}\right).tan(AB)=((385)(588))/(1+900588).\tan(A-B) = \left(\frac{(-385)}{(588)}\right) / \left(1 + \frac{900}{588}\right).
  6. Find Common Denominator: Further simplify the expression by finding a common denominator for the terms in the denominator of the fraction:\newlinetan(AB)=385588/588+900588\tan(A-B) = \frac{-385}{588} / \frac{588 + 900}{588}.\newlinetan(AB)=385588/1488588\tan(A-B) = \frac{-385}{588} / \frac{1488}{588}.
  7. Simplify Complex Fraction: Simplify the complex fraction by multiplying the numerator by the reciprocal of the denominator: tan(AB)=(385588)×(5881488)\tan(A-B) = \left(-\frac{385}{588}\right) \times \left(\frac{588}{1488}\right).
  8. Cancel Common Factors: Cancel out the common factors in the numerator and the denominator: tan(AB)=3851488\tan(A-B) = \frac{-385}{1488}.
  9. Reduce Fraction: Reduce the fraction to its simplest form: tan(AB)=55212.\tan(A-B) = \frac{-55}{212}.

More problems from Find trigonometric ratios using multiple identities