Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan A=(12)/(35) and 
cos B=(15)/(17) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If tanA=1235 \tan A=\frac{12}{35} and cosB=1517 \cos B=\frac{15}{17} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If tanA=1235 \tan A=\frac{12}{35} and cosB=1517 \cos B=\frac{15}{17} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Use tan(AB)\tan(A-B) Formula: Use the formula for tan(AB)\tan(A-B), which is tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}. We are given tanA=1235\tan A = \frac{12}{35}. We need to find tanB\tan B using the given cosB=1517\cos B = \frac{15}{17}.
  2. Find tanB\tan B: Since cosB=1517\cos B = \frac{15}{17}, we can find sinB\sin B using the Pythagorean identity sin2B+cos2B=1\sin^2 B + \cos^2 B = 1.\newlinesin2B=1cos2B\sin^2 B = 1 - \cos^2 B\newlinesin2B=1(1517)2\sin^2 B = 1 - \left(\frac{15}{17}\right)^2\newlinesin2B=1225289\sin^2 B = 1 - \frac{225}{289}\newlinesin2B=289225289\sin^2 B = \frac{289 - 225}{289}\newlinesin2B=64289\sin^2 B = \frac{64}{289}\newlinesinB=64289\sin B = \sqrt{\frac{64}{289}}\newlinecosB=1517\cos B = \frac{15}{17}00, since cosB=1517\cos B = \frac{15}{17}11 is in Quadrant I, sinB\sin B is positive.
  3. Calculate tanB\tan B: Now we can find tanB\tan B using the ratio tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}.tanB=817/1517\tan B = \frac{8}{17} / \frac{15}{17}tanB=8171715\tan B = \frac{8}{17} \cdot \frac{17}{15}tanB=815\tan B = \frac{8}{15}
  4. Substitute tan Values: Substitute the values of tanA\tan A and tanB\tan B into the tan(AB)\tan(A-B) formula.tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}tan(AB)=(1235)(815)1+(1235)(815)\tan(A-B) = \frac{(\frac{12}{35}) - (\frac{8}{15})}{1 + (\frac{12}{35}) \cdot (\frac{8}{15})}
  5. Simplify Numerator/Denominator: Simplify the numerator and the denominator separately.\newlineNumerator: (1235)(815)=(12×38×735×3)(\frac{12}{35}) - (\frac{8}{15}) = (\frac{12\times3 - 8\times7}{35\times3})\newlineNumerator: (3656105)=20105=421(\frac{36 - 56}{105}) = \frac{-20}{105} = \frac{-4}{21}\newlineDenominator: 1+(1235)×(815)=1+(96(35×15))1 + (\frac{12}{35}) \times (\frac{8}{15}) = 1 + (\frac{96}{(35\times15)})\newlineDenominator: 1+(96525)=(525+96525)=621525=2071751 + (\frac{96}{525}) = (\frac{525 + 96}{525}) = \frac{621}{525} = \frac{207}{175}
  6. Divide to Find tan(AB)\tan(A-B): Now divide the numerator by the denominator to find tan(AB)\tan(A-B).\newlinetan(AB)=421/207175\tan(A-B) = \frac{-4}{21} / \frac{207}{175}\newlinetan(AB)=421175207\tan(A-B) = \frac{-4}{21} \cdot \frac{175}{207}
  7. Final Simplification: Simplify the expression by canceling out common factors.\newlinetan(AB)=(4×175)/(21×207)\tan(A-B) = (-4 \times 175) / (21 \times 207)\newlinetan(AB)=(700)/(4347)\tan(A-B) = (-700) / (4347)\newlinetan(AB)=100/621\tan(A-B) = -100 / 621

More problems from Find trigonometric ratios using multiple identities