Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan A=(24)/(7) and 
cos B=(12)/(37) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If tanA=247 \tan A=\frac{24}{7} and cosB=1237 \cos B=\frac{12}{37} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If tanA=247 \tan A=\frac{24}{7} and cosB=1237 \cos B=\frac{12}{37} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Use tan(AB)\tan(A-B) formula: Use the formula for tan(AB)\tan(A-B), which is tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}. We know tanA=247\tan A = \frac{24}{7}, but we need to find tanB\tan B.
  2. Find sinB\sin B: To find tanB\tan B, we need to use the Pythagorean identity sin2B+cos2B=1\sin^2 B + \cos^2 B = 1 to find sinB\sin B. We know cosB=1237\cos B = \frac{12}{37}, so we can calculate sinB\sin B. sin2B=1cos2B=1(1237)2\sin^2 B = 1 - \cos^2 B = 1 - \left(\frac{12}{37}\right)^2.
  3. Calculate sin2B\sin^2 B: Calculate sin2B\sin^2 B.sin2B=1(1441369)=(13691369)(1441369)=12251369\sin^2 B = 1 - (\frac{144}{1369}) = (\frac{1369}{1369}) - (\frac{144}{1369}) = \frac{1225}{1369}.
  4. Find tanB\tan B: Find sinB\sin B by taking the square root of sin2B\sin^2 B.\newlineSince BB is in Quadrant I, sinB\sin B is positive.\newlinesinB=12251369=3537\sin B = \sqrt{\frac{1225}{1369}} = \frac{35}{37}.
  5. Simplify tanB\tan B: Now we can find tanB\tan B using sinB\sin B and cosB\cos B.\newlinetanB=sinBcosB=35371237\tan B = \frac{\sin B}{\cos B} = \frac{\frac{35}{37}}{\frac{12}{37}}.
  6. Apply tan(AB)\tan(A-B) formula: Simplify tanB\tan B.tanB=(3537)×(3712)=3512.\tan B = \left(\frac{35}{37}\right) \times \left(\frac{37}{12}\right) = \frac{35}{12}.
  7. Find common denominator: Now we have tanA\tan A and tanB\tan B, so we can use the tan(AB)\tan(A-B) formula.tan(AB)=tanAtanB1+tanAtanB=(247)(3512)1+(247)(3512)\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B} = \frac{(\frac{24}{7}) - (\frac{35}{12})}{1 + (\frac{24}{7}) \cdot (\frac{35}{12})}.
  8. Perform subtraction: Find a common denominator and subtract 247\frac{24}{7} and 3512\frac{35}{12}. The common denominator is 7×12=847 \times 12 = 84. tan(AB)=(24×127×1235×712×7)1+(24×357×12).\tan(A-B) = \frac{\left(\frac{24 \times 12}{7 \times 12} - \frac{35 \times 7}{12 \times 7}\right)}{1 + \left(\frac{24 \times 35}{7 \times 12}\right)}.
  9. Simplify numerator and denominator: Perform the subtraction in the numerator. tan(AB)=(288245)/841+(840/84)\tan(A-B) = \frac{(288 - 245) / 84}{1 + (840/84)}.
  10. Divide numerator by denominator: Simplify the numerator and the term inside the parentheses in the denominator. tan(AB)=4384/(1+10)\tan(A-B) = \frac{43}{84} / (1 + 10).
  11. Simplify fraction: Simplify the denominator. tan(AB)=4384/11\tan(A-B) = \frac{43}{84} / 11.
  12. Simplify fraction: Simplify the denominator. tan(AB)=4384/11\tan(A-B) = \frac{43}{84} / 11. Divide the numerator by the denominator. tan(AB)=4384×11=43924\tan(A-B) = \frac{43}{84 \times 11} = \frac{43}{924}.
  13. Simplify fraction: Simplify the denominator. tan(AB)=4384/11\tan(A-B) = \frac{43}{84} / 11. Divide the numerator by the denominator. tan(AB)=4384×11=43924\tan(A-B) = \frac{43}{84 \times 11} = \frac{43}{924}. Simplify the fraction. tan(AB)=43924\tan(A-B) = \frac{43}{924} can be simplified by dividing both numerator and denominator by 44. tan(AB)=43924=434×231=43924=14×21=184\tan(A-B) = \frac{43}{924} = \frac{43}{4 \times 231} = \frac{43}{924} = \frac{1}{4 \times 21} = \frac{1}{84}.

More problems from Find trigonometric ratios using multiple identities