Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
tan x=(3)/(2) and 
cos y=(6)/(sqrt37), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
sin(x-y), in simplest radical form.
Answer:

Given that tanx=32 \tan x=\frac{3}{2} and cosy=637 \cos y=\frac{6}{\sqrt{37}} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(xy) \sin (x-y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that tanx=32 \tan x=\frac{3}{2} and cosy=637 \cos y=\frac{6}{\sqrt{37}} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(xy) \sin (x-y) , in simplest radical form.\newlineAnswer:
  1. Given values: We are given tanx=32\tan x = \frac{3}{2} and cosy=637\cos y = \frac{6}{\sqrt{37}}. Since tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}, we can create a right triangle with opposite side 33, adjacent side 22, and hypotenuse 32+22=13\sqrt{3^2 + 2^2} = \sqrt{13} to find sinx\sin x and cosx\cos x.
  2. Finding sinx\sin x: Using the Pythagorean theorem, sinx=oppositehypotenuse=313\sin x = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{\sqrt{13}}. We rationalize the denominator to get sinx=31313\sin x = \frac{3\sqrt{13}}{13}.
  3. Finding siny\sin y: We are also given cosy=637\cos y = \frac{6}{\sqrt{37}}. To find siny\sin y, we use the Pythagorean identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1. Substituting cosy\cos y, we get sin2y+(637)2=1\sin^2 y + \left(\frac{6}{\sqrt{37}}\right)^2 = 1.
  4. Using sine difference formula: Solving for siny\sin y, we have sin2y=13637\sin^2 y = 1 - \frac{36}{37}. This simplifies to sin2y=37373637=137\sin^2 y = \frac{37}{37} - \frac{36}{37} = \frac{1}{37}. Taking the square root, siny=137=137\sin y = \sqrt{\frac{1}{37}} = \frac{1}{\sqrt{37}}, and we rationalize the denominator to get siny=3737\sin y = \frac{\sqrt{37}}{37}.
  5. Simplify the expression: Now we use the sine difference formula: sin(xy)=sinxcosycosxsiny\sin(x-y) = \sin x \cdot \cos y - \cos x \cdot \sin y. We substitute the values we found: sin(xy)=(31313)(637)(213)(3737)\sin(x-y) = \left(\frac{3\sqrt{13}}{13}\right) \cdot \left(\frac{6}{\sqrt{37}}\right) - \left(\frac{2}{\sqrt{13}}\right) \cdot \left(\frac{\sqrt{37}}{37}\right).
  6. Further simplification: Simplify the expression: sin(xy)=181337/1323713/37\sin(x-y) = \frac{18\sqrt{13}}{\sqrt{37}/13} - \frac{2\sqrt{37}}{\sqrt{13}/37}. This simplifies to sin(xy)=1813371337237133713\sin(x-y) = \frac{18\sqrt{13}\cdot\sqrt{37}}{13\cdot\sqrt{37}} - \frac{2\sqrt{37}\cdot\sqrt{13}}{37\cdot\sqrt{13}}.
  7. Combine the terms: Further simplification gives us sin(xy)=18481133724811337\sin(x-y) = \frac{18\sqrt{481}}{13\cdot 37} - \frac{2\sqrt{481}}{13\cdot 37}. Since the denominators are the same, we can combine the terms.
  8. Final simplification: Combining the terms, we get sin(xy)=1848124811337\sin(x-y) = \frac{18\sqrt{481} - 2\sqrt{481}}{13\cdot37}. This simplifies to sin(xy)=164811337\sin(x-y) = \frac{16\sqrt{481}}{13\cdot37}.
  9. Final simplification: Combining the terms, we get sin(xy)=1848124811337\sin(x-y) = \frac{18\sqrt{481} - 2\sqrt{481}}{13\cdot37}. This simplifies to sin(xy)=164811337\sin(x-y) = \frac{16\sqrt{481}}{13\cdot37}.Finally, we simplify the expression by dividing both numerator and denominator by their greatest common divisor, which is 11 in this case. So, the expression is already in its simplest form: sin(xy)=164811337\sin(x-y) = \frac{16\sqrt{481}}{13\cdot37}.

More problems from Find trigonometric ratios using multiple identities