Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
2x+10y=3 and 
-5x-8y=7 are true equations, what would be the value of 
7x+18y ?
Answer:

If 2x+10y=3 \mathbf{2 x}+\mathbf{1 0 y}=\mathbf{3} and 5x8y=7 -\mathbf{5 x}-\mathbf{8 y}=\mathbf{7} are true equations, what would be the value of 7x+18y \mathbf{7 x}+\mathbf{1 8 y} ?\newlineAnswer:

Full solution

Q. If 2x+10y=3 \mathbf{2 x}+\mathbf{1 0 y}=\mathbf{3} and 5x8y=7 -\mathbf{5 x}-\mathbf{8 y}=\mathbf{7} are true equations, what would be the value of 7x+18y \mathbf{7 x}+\mathbf{1 8 y} ?\newlineAnswer:
  1. Equations Setup: We have two equations:\newline11) 2x+10y=32x + 10y = 3\newline22) 5x8y=7-5x - 8y = 7\newlineWe want to find the value of 7x+18y7x + 18y. To do this, we can use the method of linear combination to eliminate one of the variables and find the value of the other variable.
  2. Eliminating Variable x: First, let's multiply the first equation by 55 and the second equation by 22 to make the coefficients of xx the same (but opposite in sign) so that we can eliminate xx by adding the equations together.\newline5(2x+10y)=5(3)5(2x + 10y) = 5(3)\newline2(5x8y)=2(7)2(-5x - 8y) = 2(7)
  3. Solving for y: After multiplying, we get:\newline10x+50y=1510x + 50y = 15\newline10x16y=14-10x - 16y = 14\newlineNow we can add these two equations together to eliminate xx.
  4. Substitute yy into Equation: Adding the equations gives us:\newline(10x10x)+(50y16y)=15+14(10x - 10x) + (50y - 16y) = 15 + 14\newline0x+34y=290x + 34y = 29\newlineNow we have a single equation with only one variable, yy.
  5. Solving for x: To find the value of yy, we divide both sides of the equation by 3434:34y34=2934\frac{34y}{34} = \frac{29}{34}y=2934y = \frac{29}{34}
  6. Substitute xx and yy: Now that we have the value of yy, we can substitute it back into one of the original equations to find the value of xx. Let's use the first equation:\newline2x+10y=32x + 10y = 3\newline2x+10(29/34)=32x + 10(29/34) = 3
  7. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+29034=32x + \frac{290}{34} = 3
    2x+14517=32x + \frac{145}{17} = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.
  8. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 3
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.
  9. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 3
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66
  10. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 3
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:
    2934\frac{29}{34}99
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 300
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 311
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 322
  11. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+29034=32x + \frac{290}{34} = 3
    2x+14517=32x + \frac{145}{17} = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:
    2934\frac{29}{34}99
    2x+29034=32x + \frac{290}{34} = 300
    2x+29034=32x + \frac{290}{34} = 311
    2x+29034=32x + \frac{290}{34} = 322We now have the values of 2934\frac{29}{34}22 and 2x+29034=32x + \frac{290}{34} = 344:
    2x+29034=32x + \frac{290}{34} = 322
    2x+29034=32x + \frac{290}{34} = 366
    We can substitute these values into the expression 2x+29034=32x + \frac{290}{34} = 377 to find its value.
  12. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 3
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:
    2934\frac{29}{34}99
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 300
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 311
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 322We now have the values of 2934\frac{29}{34}22 and 2x+(29034)=32x + \left(\frac{290}{34}\right) = 344:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 322
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 366
    We can substitute these values into the expression 2x+(29034)=32x + \left(\frac{290}{34}\right) = 377 to find its value.Substituting the values of 2934\frac{29}{34}22 and 2x+(29034)=32x + \left(\frac{290}{34}\right) = 344 into the expression gives us:
    \(7x + 1818y = 77\left(-\frac{4747}{1717}\right) + 1818\left(\frac{2929}{3434}\right)
  13. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:\newline2x+(29034)=32x + \left(\frac{290}{34}\right) = 3\newline2x+(14517)=32x + \left(\frac{145}{17}\right) = 3\newlineNow we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:\newline2934\frac{29}{34}00\newlineNow we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:\newline2934\frac{29}{34}44\newline2934\frac{29}{34}55\newline2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:\newline2934\frac{29}{34}99\newline2x+(29034)=32x + \left(\frac{290}{34}\right) = 300\newline2x+(29034)=32x + \left(\frac{290}{34}\right) = 311\newline2x+(29034)=32x + \left(\frac{290}{34}\right) = 322We now have the values of 2934\frac{29}{34}22 and 2x+(29034)=32x + \left(\frac{290}{34}\right) = 344:\newline2x+(29034)=32x + \left(\frac{290}{34}\right) = 322\newline2x+(29034)=32x + \left(\frac{290}{34}\right) = 366\newlineWe can substitute these values into the expression 2x+(29034)=32x + \left(\frac{290}{34}\right) = 377 to find its value.Substituting the values of 2934\frac{29}{34}22 and 2x+(29034)=32x + \left(\frac{290}{34}\right) = 344 into the expression gives us:\newline2x+(14517)=32x + \left(\frac{145}{17}\right) = 300Now we simplify the expression:\newline2x+(14517)=32x + \left(\frac{145}{17}\right) = 311\newlineSince the denominators are not the same, we need to find a common denominator to combine the fractions.
  14. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+29034=32x + \frac{290}{34} = 3
    2x+14517=32x + \frac{145}{17} = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:
    2934\frac{29}{34}99
    2x+29034=32x + \frac{290}{34} = 300
    2x+29034=32x + \frac{290}{34} = 311
    2x+29034=32x + \frac{290}{34} = 322We now have the values of 2934\frac{29}{34}22 and 2x+29034=32x + \frac{290}{34} = 344:
    2x+29034=32x + \frac{290}{34} = 322
    2x+29034=32x + \frac{290}{34} = 366
    We can substitute these values into the expression 2x+29034=32x + \frac{290}{34} = 377 to find its value.Substituting the values of 2934\frac{29}{34}22 and 2x+29034=32x + \frac{290}{34} = 344 into the expression gives us:
    2x+14517=32x + \frac{145}{17} = 300Now we simplify the expression:
    2x+14517=32x + \frac{145}{17} = 311
    Since the denominators are not the same, we need to find a common denominator to combine the fractions.The common denominator for 1717 and 2x+14517=32x + \frac{145}{17} = 333 is 2x+14517=32x + \frac{145}{17} = 333. We multiply the first fraction by 2x+14517=32x + \frac{145}{17} = 355 to get the same denominator:
    2x+14517=32x + \frac{145}{17} = 366
    Now we can combine the fractions.
  15. Combine and Simplify Fractions: Simplify the equation by multiplying 1010 with 2934\frac{29}{34}:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 3
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:
    2934\frac{29}{34}99
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 300
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 311
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 322We now have the values of 2934\frac{29}{34}22 and 2x+(29034)=32x + \left(\frac{290}{34}\right) = 344:
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 322
    2x+(29034)=32x + \left(\frac{290}{34}\right) = 366
    We can substitute these values into the expression 2x+(29034)=32x + \left(\frac{290}{34}\right) = 377 to find its value.Substituting the values of 2934\frac{29}{34}22 and 2x+(29034)=32x + \left(\frac{290}{34}\right) = 344 into the expression gives us:
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 300Now we simplify the expression:
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 311
    Since the denominators are not the same, we need to find a common denominator to combine the fractions.The common denominator for 1717 and 2x+(14517)=32x + \left(\frac{145}{17}\right) = 333 is 2x+(14517)=32x + \left(\frac{145}{17}\right) = 333. We multiply the first fraction by 2x+(14517)=32x + \left(\frac{145}{17}\right) = 355 to get the same denominator:
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 366
    Now we can combine the fractions.Combining the fractions gives us:
    2x+(14517)=32x + \left(\frac{145}{17}\right) = 377
    \left(\frac{\(-658\) + \(522\)}{\(34\)}\right) = \left(\frac{\(-136\)}{\(34\)}\right)
  16. Combine and Simplify Fractions: Simplify the equation by multiplying \(10 with 2934\frac{29}{34}:
    2x+29034=32x + \frac{290}{34} = 3
    2x+14517=32x + \frac{145}{17} = 3
    Now we need to convert 33 to a fraction with a denominator of 1717 to combine it with 14517\frac{145}{17}.Converting 33 to a fraction with a denominator of 1717 gives us 5117\frac{51}{17}:
    2934\frac{29}{34}00
    Now we can subtract 14517\frac{145}{17} from both sides to solve for 2934\frac{29}{34}22.Subtracting 14517\frac{145}{17} from both sides gives us:
    2934\frac{29}{34}44
    2934\frac{29}{34}55
    2934\frac{29}{34}66Now we divide both sides by 2934\frac{29}{34}77 to find the value of 2934\frac{29}{34}22:
    2934\frac{29}{34}99
    2x+29034=32x + \frac{290}{34} = 300
    2x+29034=32x + \frac{290}{34} = 311
    2x+29034=32x + \frac{290}{34} = 322We now have the values of 2934\frac{29}{34}22 and 2x+29034=32x + \frac{290}{34} = 344:
    2x+29034=32x + \frac{290}{34} = 322
    2x+29034=32x + \frac{290}{34} = 366
    We can substitute these values into the expression 2x+29034=32x + \frac{290}{34} = 377 to find its value.Substituting the values of 2934\frac{29}{34}22 and 2x+29034=32x + \frac{290}{34} = 344 into the expression gives us:
    2x+14517=32x + \frac{145}{17} = 300Now we simplify the expression:
    2x+14517=32x + \frac{145}{17} = 311
    Since the denominators are not the same, we need to find a common denominator to combine the fractions.The common denominator for 1717 and 2x+14517=32x + \frac{145}{17} = 333 is 2x+14517=32x + \frac{145}{17} = 333. We multiply the first fraction by 2x+14517=32x + \frac{145}{17} = 355 to get the same denominator:
    2x+14517=32x + \frac{145}{17} = 366
    Now we can combine the fractions.Combining the fractions gives us:
    2x+14517=32x + \frac{145}{17} = 377
    2x+14517=32x + \frac{145}{17} = 388Finally, we simplify the fraction by dividing both the numerator and the denominator by 2934\frac{29}{34}77:
    3300
    So, the value of 2x+29034=32x + \frac{290}{34} = 377 is 3322.

More problems from Find trigonometric ratios using multiple identities