Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Use the laws to re-write the following expression as a power of
x
x
x
:
\newline
x
x
x
x
\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}
x
x
x
x
Get tutor help
What is the constant term in the expression
\newline
(
1
)
/
(
12
)
(
x
−
4
)
−
(
5
)
/
(
2
)
x
(
x
2
−
7
x
+
1
)
(1)/(12)(x-4)-(5)/(2)x(x^{2}-7x+1)
(
1
)
/
(
12
)
(
x
−
4
)
−
(
5
)
/
(
2
)
x
(
x
2
−
7
x
+
1
)
?
Get tutor help
Simplify the expression.
\newline
y
2
−
25
y
2
−
10
y
+
25
\frac{y^{2}-25}{y^{2}-10 y+25}
y
2
−
10
y
+
25
y
2
−
25
\newline
Enclose numerators and denominators in parentheses. For example,
(
a
−
b
)
/
(
1
+
n
)
(a-b) /(1+n)
(
a
−
b
)
/
(
1
+
n
)
.
Get tutor help
∫
5
2
x
+
1
d
x
\int \frac{5}{2 x+1} d x
∫
2
x
+
1
5
d
x
Get tutor help
The function
g
(
x
)
g(x)
g
(
x
)
is odd and continuous for all
x
\mathrm{x}
x
. If
∫
0
a
g
(
x
)
d
x
=
3.5
\int_{0}^{a} g(x) d x=3.5
∫
0
a
g
(
x
)
d
x
=
3.5
, what is
∫
−
a
a
g
(
x
)
d
x
?
\int_{-a}^{a} g(x) d x ?
∫
−
a
a
g
(
x
)
d
x
?
Get tutor help
An irrational number between
2
\sqrt{2}
2
and
3
\sqrt{3}
3
is
\newline
(a)
(
2
+
3
)
(\sqrt{2}+\sqrt{3})
(
2
+
3
)
\newline
(b)
2
×
3
\sqrt{2} \times \sqrt{3}
2
×
3
\newline
(c)
5
1
/
4
5^{1 / 4}
5
1/4
\newline
(d)
6
1
/
4
6^{1 / 4}
6
1/4
Get tutor help
Write the equation of all horizontal asymptotes of the function
f
(
x
)
=
6
x
−
e
x
3
x
−
2
x
2
f(x)=\frac{6x-e^{x}}{3x-2x^{2}}
f
(
x
)
=
3
x
−
2
x
2
6
x
−
e
x
.
Get tutor help
Find the truth set of the following simultaneous equation
\newline
5
x
6
−
3
4
\frac{5x}{6}-\frac{3}{4}
6
5
x
−
4
3
y
=
1
2
×
2
3
y=\frac{1}{2}\times\frac{2}{3}
y
=
2
1
×
3
2
y
=
5
2
y=\frac{5}{2}
y
=
2
5
Get tutor help
Use Green's theorem to evaluate the line integral along the given positively oriented curve,
∫
C
7
y
3
d
x
−
7
x
3
d
y
,
is the circle
x
2
+
y
2
=
4
\int_{C}7y^{3}\,dx-7x^{3}\,dy,\quad \text{is the circle } x^{2}+y^{2}=4
∫
C
7
y
3
d
x
−
7
x
3
d
y
,
is the circle
x
2
+
y
2
=
4
Get tutor help
What is the simplified form of the polynomial expression shown?
\newline
−
3
x
2
(
x
−
y
2
)
−
(
y
3
−
5
)
−
3
y
2
(
x
2
−
4
y
)
+
4
x
3
-3x^{2}(x-y^{2})-(y^{3}-5)-3y^{2}(x^{2}-4y)+4x^{3}
−
3
x
2
(
x
−
y
2
)
−
(
y
3
−
5
)
−
3
y
2
(
x
2
−
4
y
)
+
4
x
3
\newline
Get tutor help
Which of the following is a rational number?
\newline
Choices:
\newline
(A)
π
\pi
π
\newline
(B)
4
7
\frac{4}{7}
7
4
\newline
(C)
10
\sqrt{10}
10
\newline
(D)
3
\sqrt{3}
3
Get tutor help
∫
4
x
cos
(
2
−
3
x
)
d
x
\int 4 x \cos (2-3 x) d x
∫
4
x
cos
(
2
−
3
x
)
d
x
Get tutor help
(b) Use integration by parts to evaluate
∫
0
π
2
x
⋅
cos
x
d
x
\int_0^{\frac{\pi}{2}} x \cdot \cos x \, dx
∫
0
2
π
x
⋅
cos
x
d
x
Get tutor help
∫
sin
2
x
sin
x
d
x
\int \frac{\sin 2 x}{\sin x} d x
∫
s
i
n
x
s
i
n
2
x
d
x
=
Get tutor help
∫
x
3
−
2
x
x
d
x
\int \frac{x^{3}-2 \sqrt{x}}{x} d x
∫
x
x
3
−
2
x
d
x
=
Get tutor help
Simplify:
∫
x
x
d
x
\int \frac{x}{x}dx
∫
x
x
d
x
Get tutor help
∫
sec
t
(
sec
t
+
tan
t
)
d
t
\int \sec t(\sec t+\tan t) d t
∫
sec
t
(
sec
t
+
tan
t
)
d
t
=
Get tutor help
What could be the value of
x
x
x
in the following equation? Select all that apply.
\newline
x
2
=
1
36
x^2 = \frac{1}{36}
x
2
=
36
1
\newline
Multi-select Choices:
\newline
(A)
1
18
\frac{1}{18}
18
1
\newline
(B)
1
36
\sqrt{\frac{1}{36}}
36
1
\newline
(C)
−
1
18
-\frac{1}{18}
−
18
1
\newline
(D)
−
1
36
-\sqrt{\frac{1}{36}}
−
36
1
Get tutor help
RT
4
4
4
- Mathematical Knowledge
\newline
Evaluate
\newline
(
b
−
a
)
2
−
3
c
(
−
a
)
3
\frac{(b-a)^{2}-3c}{(-a)^{3}}
(
−
a
)
3
(
b
−
a
)
2
−
3
c
, when
\newline
a
=
4
a=4
a
=
4
,
b
=
5
b=5
b
=
5
, and
\newline
c
=
2
c=2
c
=
2
\newline
A
5
12
\frac{5}{12}
12
5
\newline
B
−
5
12
-\frac{5}{12}
−
12
5
\newline
C
5
64
\frac{5}{64}
64
5
\newline
D
−
5
64
\quad-\frac{5}{64}
−
64
5
\newline
Click the button or type the letter to the left of you
Get tutor help
Find the
8
th
8^{\text{th}}
8
th
term in the sequence
\newline
−
1
2
,
−
1
,
−
2
,
−
4
,
…
-\frac{1}{2},-1,-2,-4,\dots
−
2
1
,
−
1
,
−
2
,
−
4
,
…
\newline
Get tutor help
∫
1
x
3
ln
x
d
x
\int \frac{1}{x^{3}}\ln x \, dx
∫
x
3
1
ln
x
d
x
Get tutor help
Evaluate the integral
∫
Γ
(
e
2
2
⋅
(
2
2
+
1
)
)
d
z
\int_{\Gamma}\left(\frac{e^{2}}{2\cdot(2^{2}+1)}\right)dz
∫
Γ
(
2
⋅
(
2
2
+
1
)
e
2
)
d
z
Get tutor help
Evaluate the integral
∫
x
+
3
4
x
+
4
d
x
\int \frac{x+3}{4 x+4} d x
∫
4
x
+
4
x
+
3
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
4
x
+
ln
∣
x
+
1
∣
+
C
\frac{1}{4} x+\ln |x+1|+C
4
1
x
+
ln
∣
x
+
1∣
+
C
\newline
(B)
1
4
x
+
2
ln
∣
x
+
1
∣
+
C
\frac{1}{4} x+2 \ln |x+1|+C
4
1
x
+
2
ln
∣
x
+
1∣
+
C
\newline
(C)
1
4
x
+
ln
∣
x
+
1
∣
2
+
C
\frac{1}{4} x+\frac{\ln |x+1|}{2}+C
4
1
x
+
2
l
n
∣
x
+
1∣
+
C
\newline
(D)
1
4
x
+
ln
∣
x
+
1
∣
4
+
C
\frac{1}{4} x+\frac{\ln |x+1|}{4}+C
4
1
x
+
4
l
n
∣
x
+
1∣
+
C
Get tutor help
g
(
x
)
=
∫
2
x
13
1
+
t
2
d
t
g
′
(
5
)
=
\begin{array}{l}g(x)=\int_{2}^{x} \frac{13}{1+t^{2}} d t \\ g^{\prime}(5)=\end{array}
g
(
x
)
=
∫
2
x
1
+
t
2
13
d
t
g
′
(
5
)
=
Get tutor help
If
I
=
∫
d
x
sin
(
x
−
a
)
sin
(
x
−
b
)
I=\int \frac{\mathrm{d}x}{\sin(x-a)\sin(x-b)}
I
=
∫
s
i
n
(
x
−
a
)
s
i
n
(
x
−
b
)
d
x
, then
\newline
I
I
I
is given by
Get tutor help
\newline
The value of
\newline
∫
e
x
(
x
2
+
4
x
+
4
(
x
+
4
)
2
)
d
x
\int e^{x}\left(\frac{x^{2}+4x+4}{(x+4)^{2}}\right)dx
∫
e
x
(
(
x
+
4
)
2
x
2
+
4
x
+
4
)
d
x
is
Get tutor help
what is the range of
cos
x
\cos{\sqrt{x}}
cos
x
where
.
{.}
.
represents fractional part
Get tutor help
The function
\newline
f
(
x
)
=
4
−
x
2
4
x
−
x
3
f(x)=\frac{4-x^{2}}{4x-x^{3}}
f
(
x
)
=
4
x
−
x
3
4
−
x
2
is
\newline
(a) discontinuous at only one point
\newline
(b) discontinuous at exactly two points
\newline
(c) discontinuous at exactly three points
\newline
(d) None of the above
Get tutor help
Write the following as an exponential expression.
\newline
1
3
3
4
\sqrt[4]{13^{3}}
4
1
3
3
Get tutor help
∫
x
(
x
−
1
)
5
d
x
\int x(x-1)^{5} d x
∫
x
(
x
−
1
)
5
d
x
Get tutor help
∫
x
−
3
(
x
−
1
)
(
x
−
2
)
d
x
\int \frac{x-3}{(x-1)(x-2)} d x
∫
(
x
−
1
)
(
x
−
2
)
x
−
3
d
x
Get tutor help
Solve the system of equations.
\newline
y
=
−
4
x
y
=
2
x
2
−
15
x
\begin{array}{l} y=-4 x \\ y=2 x^{2}-15 x \end{array}
y
=
−
4
x
y
=
2
x
2
−
15
x
\newline
solutions
=
(
= (
=
(
□
\square
□
and
□
)
\square )
□
)
Get tutor help
Distribute to create an equivalent expression with the fewest symbols possible.
\newline
1
2
(
10
x
+
20
y
+
10
z
)
=
□
\frac{1}{2}(10 x+20 y+10 z) = \square
2
1
(
10
x
+
20
y
+
10
z
)
=
□
Get tutor help
Given that
y
=
27
x
3
+
1
x
+
1
y=27 x^{3}+\frac{1}{x}+1
y
=
27
x
3
+
x
1
+
1
\newline
(a) write down an expression for
d
y
d
x
\frac{\mathrm{d} y}{\mathrm{~d} x}
d
x
d
y
,
Get tutor help
∫
7
(
x
−
2
)
(
x
+
5
)
d
x
\int \frac{7}{(x-2)(x+5)} d x
∫
(
x
−
2
)
(
x
+
5
)
7
d
x
Get tutor help
d
=
(
−
11
−
(
−
2
)
2
+
(
10
−
7
)
2
d
=
\begin{array}{c}d=\sqrt{\left(-11-(-2)^{2}+(10-7)^{2}\right.} \\ d=\end{array}
d
=
(
−
11
−
(
−
2
)
2
+
(
10
−
7
)
2
d
=
Get tutor help
Calculate the iterated integral.
\newline
∫
0
1
∫
0
1
5
s
+
t
d
s
d
t
\int_{0}^{1} \int_{0}^{1} 5 \sqrt{s+t} d s d t
∫
0
1
∫
0
1
5
s
+
t
d
s
d
t
Get tutor help
Simplify the following expression.
\newline
(
4
y
+
7
)
(
y
−
2
)
4
y
2
+
□
y
+
□
\begin{array}{l} (4 y+7)(y-2) \\ 4 y^{2}+\square y+\square \end{array}
(
4
y
+
7
)
(
y
−
2
)
4
y
2
+
□
y
+
□
Get tutor help
Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
P
=
(
−
10
4
,
−
6
4
)
P=\left(-\frac{\sqrt{10}}{4},-\frac{\sqrt{6}}{4}\right)
P
=
(
−
4
10
,
−
4
6
)
\newline
Answer:
Get tutor help
∫
14
x
3
/
2
−
49
x
d
x
\int \frac{14}{x^{3 / 2}-49 \sqrt{x}} d x
∫
x
3/2
−
49
x
14
d
x
Get tutor help
∫
x
x
+
1
\int \frac{\sqrt{x}}{x+1}
∫
x
+
1
x
Get tutor help
∫
2
x
(
x
−
1
)
(
x
−
2
)
(
x
+
4
)
d
x
\int \frac{2 x}{(x-1)(x-2)(x+4)} d x
∫
(
x
−
1
)
(
x
−
2
)
(
x
+
4
)
2
x
d
x
=
Get tutor help
∫
9
−
x
2
x
4
d
x
\int \frac{\sqrt{9-x^{2}}}{x^{4}} d x
∫
x
4
9
−
x
2
d
x
=
Get tutor help
Using the substitution
x
=
sin
2
θ
x=\sin^{2}\theta
x
=
sin
2
θ
, or otherwise, evaluate
∫
0
1
2
x
1
−
x
d
x
\int_{0}^{\frac{1}{2}}\sqrt{\frac{x}{1-x}}dx
∫
0
2
1
1
−
x
x
d
x
.
Get tutor help
(e) Use the substitution
\newline
x
=
3
sin
θ
x=3\sin \theta
x
=
3
sin
θ
to evaluate
\newline
∫
0
3
2
d
x
(
9
−
x
2
)
3
2
\int_{0}^{\frac{3}{\sqrt{2}}}\frac{dx}{(9-x^{2})^{\frac{3}{2}}}
∫
0
2
3
(
9
−
x
2
)
2
3
d
x
Get tutor help
What is the general solution to the differential equation that generated the slope field?
\newline
Choose
1
1
1
answer:
\newline
(
a
)
(a)
(
a
)
y
=
x
+
C
y=x+C
y
=
x
+
C
\newline
(
b
)
(b)
(
b
)
y
=
x
2
+
C
y=x^{2}+C
y
=
x
2
+
C
\newline
(
c
)
(c)
(
c
)
x
=
y
2
+
C
x=y^{2}+C
x
=
y
2
+
C
\newline
(
d
)
(d)
(
d
)
y
2
=
x
2
+
C
y^{2}=x^{2}+C
y
2
=
x
2
+
C
\newline
(
e
)
(e)
(
e
)
x
2
+
y
2
=
C
x^{2}+y^{2}=C
x
2
+
y
2
=
C
Get tutor help
Which of the following is a rational number?
\newline
Choices:
\newline
(A)
2
7
\frac{2}{7}
7
2
\newline
(B)
π
\pi
π
\newline
(C)
3
\sqrt{3}
3
\newline
(D)
8
\sqrt{8}
8
Get tutor help
Integrate
∫
d
x
7
x
2
+
8
\int \frac{d x}{7 x^{2}+8}
∫
7
x
2
+
8
d
x
=
Get tutor help
Rewrite the function by using long division to perform
(
110
x
−
11
,
000
)
÷
(
x
−
150
)
(110 x-11,000) \div(x-150)
(
110
x
−
11
,
000
)
÷
(
x
−
150
)
.
\newline
(
110
x
−
11
,
000
)
÷
(
x
−
150
)
=
□
(110 x-11,000) \div(x-150)=\square
(
110
x
−
11
,
000
)
÷
(
x
−
150
)
=
□
\newline
(Simplify your answer. If there is a remainder, type your answer in the form quotient
+
remainder
divisor
+\frac{\text { remainder }}{\text { divisor }}
+
divisor
remainder
.)
\newline
Then use this new form of the function to find
f
(
40
)
\mathrm{f}(40)
f
(
40
)
.
\newline
f
(
40
)
=
□
f(40)=\square
f
(
40
)
=
□
(Round to the nearest integer as needed.)
Get tutor help
Evaluate the integral:
∫
x
5
−
x
4
−
3
x
+
5
(
x
2
−
x
+
1
)
2
\int \frac{x^{5}-x^{4}-3 x+5}{\left(x^{2}-x+1\right)^{2}}
∫
(
x
2
−
x
+
1
)
2
x
5
−
x
4
−
3
x
+
5
Get tutor help
1
2
3
...
6
Next