Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(x^(3)-2sqrtx)/(x)dx

x32xxdx \int \frac{x^{3}-2 \sqrt{x}}{x} d x =

Full solution

Q. x32xxdx \int \frac{x^{3}-2 \sqrt{x}}{x} d x =
  1. Split Fraction: Simplify the integral by splitting the fraction.\newlinex32xxdx=(x22x1/2)dx \int \frac{x^3 - 2\sqrt{x}}{x} \, dx = \int \left(x^2 - 2x^{-1/2}\right) \, dx
  2. Integrate Terms: Integrate each term separately.\newlinex2dx=x33 \int x^2 \, dx = \frac{x^3}{3} \newline2x1/2dx=2x1/21/2=4x1/2 \int -2x^{-1/2} \, dx = -2 \cdot \frac{x^{1/2}}{1/2} = -4x^{1/2}
  3. Combine and Add Constant: Combine the integrated terms and add the constant of integration.\newlinex334x1/2+C \frac{x^3}{3} - 4x^{1/2} + C