Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(2x)/((x-1)(x-2)(x+4))dx=

2x(x1)(x2)(x+4)dx \int \frac{2 x}{(x-1)(x-2)(x+4)} d x =

Full solution

Q. 2x(x1)(x2)(x+4)dx \int \frac{2 x}{(x-1)(x-2)(x+4)} d x =
  1. Identify and Decide: Identify the structure of the integral and decide on a strategy.\newlineThe integral is a rational function where the numerator degree is less than the denominator degree. This suggests that we can use partial fractions" target="_blank" class="backlink">fraction decomposition to rewrite the integral as a sum of simpler fractions that can be integrated individually.
  2. Perform Decomposition: Perform partial fraction decomposition.\newlineWe want to express (2x)/((x1)(x2)(x+4))(2x)/((x-1)(x-2)(x+4)) as A/(x1)+B/(x2)+C/(x+4)A/(x-1) + B/(x-2) + C/(x+4), where AA, BB, and CC are constants to be determined.
  3. Clear Fractions and Solve: Multiply both sides by the denominator to clear the fractions and solve for AA, BB, and CC.2x=A(x2)(x+4)+B(x1)(x+4)+C(x1)(x2)2x = A(x-2)(x+4) + B(x-1)(x+4) + C(x-1)(x-2)We will now find the values of AA, BB, and CC by plugging in suitable xx values that simplify the equation.
  4. Find A Value: Find the value of AA by plugging in x=1x=1.2(1)=A(12)(1+4)2(1) = A(1-2)(1+4)2=A(1)(5)2 = A(-1)(5)A=25A = -\frac{2}{5}
  5. Find B Value: Find the value of B by plugging in x=2x=2.2(2)=B(21)(2+4)2(2) = B(2-1)(2+4)4=B(1)(6)4 = B(1)(6)B=46B = \frac{4}{6}B=23B = \frac{2}{3}
  6. Find C Value: Find the value of C by plugging in x=4x=-4.2(4)=C(41)(42)2(-4) = C(-4-1)(-4-2)8=C(5)(6)-8 = C(-5)(-6)8=30C-8 = 30CC=830C = \frac{-8}{30}C=415C = \frac{-4}{15}
  7. Write with Partial Fractions: Write the integral with the determined partial fractions. \newline2x(x1)(x2)(x+4)dx=25x1dx+23x2dx+415x+4dx\int \frac{2x}{(x-1)(x-2)(x+4)}dx = \int \frac{-\frac{2}{5}}{x-1}dx + \int \frac{\frac{2}{3}}{x-2}dx + \int \frac{-\frac{4}{15}}{x+4}dx
  8. Integrate Each Term: Integrate each term separately. \newline251x1dx=25lnx1+C1\int \frac{-2}{5}\frac{1}{x-1}dx = \frac{-2}{5}\ln|x-1| + C_1\newline231x2dx=23lnx2+C2\int \frac{2}{3}\frac{1}{x-2}dx = \frac{2}{3}\ln|x-2| + C_2\newline4151x+4dx=415lnx+4+C3\int \frac{-4}{15}\frac{1}{x+4}dx = \frac{-4}{15}\ln|x+4| + C_3
  9. Combine and Write Final Answer: Combine the constants and write the final answer.\newlineThe final answer is the sum of the three integrals with a single constant of integration.\newline(-\frac{\(2\)}{\(5\)})\ln|x\(-1| + (\frac{22}{33})\ln|x2-2| + (-\frac{44}{1515})\ln|x+44| + C