Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int sec t(sec t+tan t)dt

sect(sect+tant)dt \int \sec t(\sec t+\tan t) d t =

Full solution

Q. sect(sect+tant)dt \int \sec t(\sec t+\tan t) d t =
  1. Distribute sec(t)\sec(t): Rewrite the integral by distributing sec(t)\sec(t) inside the parentheses.\newlineCalculation: \int \sec(t)(\sec(t) + \tan(t)) \, dt = \int (\sec^\(2(t) + \sec(t)\tan(t)) \, dt
  2. Integrate each term: Integrate each term separately.\newlineCalculation: sec2(t)dt+sec(t)tan(t)dt\int \sec^2(t) \, dt + \int \sec(t)\tan(t) \, dt
  3. Find integrals: The integral of sec2(t)\sec^2(t) is tan(t)\tan(t), and the integral of sec(t)tan(t)\sec(t)\tan(t) is sec(t)\sec(t).\newlineCalculation: tan(t)+sec(t)+C\tan(t) + \sec(t) + C
  4. Combine results: Combine the results to get the final answer.\newlineCalculation: tan(t)+sec(t)+C\tan(t) + \sec(t) + C