Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int x(x-1)^(5)dx

x(x1)5dx \int x(x-1)^{5} d x

Full solution

Q. x(x1)5dx \int x(x-1)^{5} d x
  1. Recognize opportunity for integration by parts: Recognize the integral as an opportunity to use integration by parts. Integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du Let u=xu = x and dv=(x1)5dxdv = (x-1)^5 \, dx.
  2. Differentiate uu and integrate dvdv: Differentiate uu and integrate dvdv.du=dxdu = dx and v=(x1)5dxv = \int(x-1)^5 dx. To find vv, we need to integrate (x1)5(x-1)^5.
  3. Integrate (x1)5(x-1)^5 using substitution: Integrate (x1)5(x-1)^5 using the substitution method.\newlineLet t=x1t = x - 1, then dt=dxdt = dx and when x=1x = 1, t=0t = 0.\newlineNow we integrate t5dtt^5 dt.
  4. Calculate integral of t5t^5: Calculate the integral of t5t^5.t5dt=(16)t6+C\int t^5 \, dt = \left(\frac{1}{6}\right)t^6 + CNow we substitute back x1x - 1 for tt.v=(16)(x1)6+Cv = \left(\frac{1}{6}\right)(x - 1)^6 + C
  5. Apply integration by parts formula: Apply the integration by parts formula.\newlinex(x1)5dx=uvvdu\int x(x-1)^5 \, dx = uv - \int v \, du\newline= x[16(x1)6+C][16(x1)6+C]dxx \cdot \left[\frac{1}{6}(x - 1)^6 + C\right] - \int\left[\frac{1}{6}(x - 1)^6 + C\right] \, dx
  6. Simplify expression and integrate remaining term: Simplify the expression and integrate the remaining term.\newline=16x(x1)616(x1)6dx= \frac{1}{6}x(x - 1)^6 - \frac{1}{6}\int(x - 1)^6 dx\newlineNow we need to integrate (x1)6(x - 1)^6.
  7. Integrate (x1)6(x - 1)^6 using substitution: Integrate (x1)6(x - 1)^6 using the substitution method.\newlineLet t=x1t = x - 1, then dt=dxdt = dx and when x=1x = 1, t=0t = 0.\newlineNow we integrate t6dtt^6 dt.
  8. Calculate integral of t6t^6: Calculate the integral of t6t^6.t6dt=(17)t7+C\int t^6 \, dt = \left(\frac{1}{7}\right)t^7 + CNow we substitute back x1x - 1 for tt.(x1)6dx=(17)(x1)7+C\int(x - 1)^6 \, dx = \left(\frac{1}{7}\right)(x - 1)^7 + C
  9. Substitute integral back into expression: Substitute the integral back into the expression.\newline=16x(x1)616×[17(x1)7+C]= \frac{1}{6}x(x - 1)^6 - \frac{1}{6} \times \left[\frac{1}{7}(x - 1)^7 + C\right]\newline=16x(x1)6142(x1)7C6= \frac{1}{6}x(x - 1)^6 - \frac{1}{42}(x - 1)^7 - \frac{C}{6}
  10. Combine constants and write final answer: Combine the constants and write the final answer.\newlineThe indefinite integral of x(x1)5x(x-1)^5 with respect to xx is:\newlineI=16x(x1)6142(x1)7+CI = \frac{1}{6}x(x - 1)^6 - \frac{1}{42}(x - 1)^7 + C\newlineWhere CC is the constant of integration.

More problems from Find indefinite integrals using the substitution and by parts