Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the constant term in the expression 
(1)/(12)(x-4)-(5)/(2)x(x^(2)-7x+1)?

What is the constant term in the expression \newline(1)/(12)(x4)(5)/(2)x(x27x+1)(1)/(12)(x-4)-(5)/(2)x(x^{2}-7x+1)?

Full solution

Q. What is the constant term in the expression \newline(1)/(12)(x4)(5)/(2)x(x27x+1)(1)/(12)(x-4)-(5)/(2)x(x^{2}-7x+1)?
  1. Distribute and Combine Terms: Simplify the expression by distributing and combining like terms. \newline(112)(x4)(52)x(x27x+1)(\frac{1}{12})(x-4) - (\frac{5}{2})x(x^2 - 7x + 1)\newline= (112)x(13)(52)x3+(352)x2(52)x(\frac{1}{12})x - (\frac{1}{3}) - (\frac{5}{2})x^3 + (\frac{35}{2})x^2 - (\frac{5}{2})x
  2. Combine Like Terms: Combine like terms to simplify further.\newlineCombine the xx terms and constant terms separately.\newline=(52)x3+(352)x2+((112)(52)(13))x13= -\left(\frac{5}{2}\right)x^3 + \left(\frac{35}{2}\right)x^2 + \left(\left(\frac{1}{12}\right) - \left(\frac{5}{2}\right) - \left(\frac{1}{3}\right)\right)x - \frac{1}{3}\newline=(52)x3+(352)x2(6112)x13= -\left(\frac{5}{2}\right)x^3 + \left(\frac{35}{2}\right)x^2 - \left(\frac{61}{12}\right)x - \frac{1}{3}