Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(14)/(x^(3//2)-49sqrtx)dx

14x3/249xdx \int \frac{14}{x^{3 / 2}-49 \sqrt{x}} d x

Full solution

Q. 14x3/249xdx \int \frac{14}{x^{3 / 2}-49 \sqrt{x}} d x
  1. Simplify and Substitute: Simplify the integral if possible.\newlineWe have the integral 14x3249xdx\int \frac{14}{x^{\frac{3}{2}}-49\sqrt{x}}\,dx. We can simplify the denominator by factoring out the common term x\sqrt{x}, which is x12x^{\frac{1}{2}}.\newlinex3249x=x(x49)x^{\frac{3}{2}} - 49\sqrt{x} = \sqrt{x}(x - 49)\newlineNow, the integral becomes 14x(x49)dx\int \frac{14}{\sqrt{x}(x - 49)}\,dx.
  2. Alternative Substitution: Perform a substitution.\newlineLet u=x49u = x - 49, then dudx=1\frac{du}{dx} = 1, so dx=dudx = du.\newlineWhen x=49x = 49, u=0u = 0. We need to change the x\sqrt{x} in terms of uu as well.\newlineSince u=x49u = x - 49, x=u+49x = u + 49, and x=u+49\sqrt{x} = \sqrt{u + 49}.\newlineNow, substitute into the integral: dudx=1\frac{du}{dx} = 100.
  3. New Simplification: Split the integral into two parts if possible.\newlineThe integral 14u+49udu\int \frac{14}{\sqrt{u + 49} \cdot u}\,du is difficult to integrate as it is. However, we can split it into two separate integrals by dividing 1414 by the product u+49u\sqrt{u + 49} \cdot u.\newlineThis step is not applicable here as the integral does not simplify easily into two separate integrals. We need to find another method to solve this integral.
  4. Partial Fraction Decomposition: Look for an alternative substitution or method.\newlineThe substitution made in Step 22 does not seem to simplify the integral enough for us to integrate easily. We need to consider a different approach.\newlineLet's go back to the original integral and try a different substitution.\newlineLet's try the substitution u=x1/2u = x^{1/2}, which implies x=u2x = u^2 and dx=2ududx = 2u \, du.\newlineNow, substitute into the integral: 14u349u2udu\int \frac{14}{u^3 - 49u} \cdot 2u \, du.
  5. Integrate with Fractions: Simplify the integral with the new substitution.\newlineWe have the integral (142u)/(u349u)du\int(14 \cdot 2u)/(u^3 - 49u) \, du.\newlineThis simplifies to (28u)/(u(u249))du\int(28u)/(u(u^2 - 49)) \, du.\newlineWe can cancel out a uu from the numerator and denominator: (28)/(u249)du\int(28)/(u^2 - 49) \, du.\newlineNow, we have a difference of squares in the denominator: u249=(u7)(u+7)u^2 - 49 = (u - 7)(u + 7).
  6. Final Integration: Perform partial fraction decomposition.\newlineWe can express 1u249\frac{1}{u^2 - 49} as Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}.\newlineMultiplying both sides by (u249)(u^2 - 49), we get 1=A(u+7)+B(u7)1 = A(u + 7) + B(u - 7).\newlineSetting u=7u = 7, we find that A=114A = \frac{1}{14}. Setting u=7u = -7, we find that B=114B = -\frac{1}{14}.\newlineNow, the integral becomes (28(114)/(u7)114/(u+7))du\int(28 \cdot (\frac{1}{14})/(u - 7) - \frac{1}{14}/(u + 7)) \, du.
  7. Final Integration: Perform partial fraction decomposition.\newlineWe can express 1u249\frac{1}{u^2 - 49} as Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}.\newlineMultiplying both sides by (u249)(u^2 - 49), we get 1=A(u+7)+B(u7)1 = A(u + 7) + B(u - 7).\newlineSetting u=7u = 7, we find that A=114A = \frac{1}{14}. Setting u=7u = -7, we find that B=114B = -\frac{1}{14}.\newlineNow, the integral becomes (28(114)/(u7)114/(u+7))du\int(28 \cdot (\frac{1}{14})/(u - 7) - \frac{1}{14}/(u + 7)) \, du.Integrate using the partial fractions.\newlineThe integral is now (2u72u+7)du\int(\frac{2}{u - 7} - \frac{2}{u + 7}) \, du.\newlineThis integrates to Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}00.
  8. Final Integration: Perform partial fraction decomposition.\newlineWe can express 1u249\frac{1}{u^2 - 49} as Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}.\newlineMultiplying both sides by (u249)(u^2 - 49), we get 1=A(u+7)+B(u7)1 = A(u + 7) + B(u - 7).\newlineSetting u=7u = 7, we find that A=114A = \frac{1}{14}. Setting u=7u = -7, we find that B=114B = -\frac{1}{14}.\newlineNow, the integral becomes (28(114)/(u7)114/(u+7))du\int(28 \cdot (\frac{1}{14})/(u - 7) - \frac{1}{14}/(u + 7)) \, du.Integrate using the partial fractions.\newlineThe integral is now (2u72u+7)du\int(\frac{2}{u - 7} - \frac{2}{u + 7}) \, du.\newlineThis integrates to Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}00.Substitute back to the original variable Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}11.\newlineRecall that Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}22, so the integral becomes Au7+Bu+7\frac{A}{u - 7} + \frac{B}{u + 7}33.