Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


The value of 
inte^(x)((x^(2)+4x+4)/((x+4)^(2)))dx is

\newlineThe value of \newlineex(x2+4x+4(x+4)2)dx\int e^{x}\left(\frac{x^{2}+4x+4}{(x+4)^{2}}\right)dx is

Full solution

Q. \newlineThe value of \newlineex(x2+4x+4(x+4)2)dx\int e^{x}\left(\frac{x^{2}+4x+4}{(x+4)^{2}}\right)dx is
  1. Simplify the integrand: Let's simplify the integrand first. Notice that (x2+4x+4)(x^2 + 4x + 4) is the expansion of (x+2)2(x + 2)^2. So, we rewrite the integral as (ex(x+2)2(x+4)2)dx\int(e^{x}\frac{(x+2)^2}{(x+4)^2})dx.
  2. Perform substitution: Now, let's do a substitution. Let u=x+4u = x + 4, then du=dxdu = dx and x=u4x = u - 4. Substitute into the integral to get e(u4)((u2)2u2)du\int e^{(u-4)}\left(\frac{(u-2)^2}{u^2}\right)du.
  3. Expand the numerator: Expand the numerator to get (eu4(u24u+4)/u2)du\int(e^{u-4}(u^2 - 4u + 4)/u^2)\,du.
  4. Split the integral: Split the integral into three parts: (eu4du)4(eu4u)du+4(eu4u2)du\int(e^{u-4}\,du) - 4\int(\frac{e^{u-4}}{u})\,du + 4\int(\frac{e^{u-4}}{u^2})\,du.
  5. Calculate the first integral: The first integral (eu4du)\int(e^{u-4}\,du) is straightforward, it's eu4e4+C1\frac{e^{u-4}}{e^{-4}} + C_1, which simplifies to eue4+C1\frac{e^u}{e^4} + C_1.
  6. Calculate the second integral: The second integral 4(eu4/u)du-4\int(e^{u-4}/u)\,du is a bit tricky, but we can use integration by parts or look it up as a standard integral. It's 4e4Ei(u)+C2-4e^{-4}Ei(u) + C_2, where EiEi is the exponential integral.
  7. Calculate the third integral: The third integral 4(eu4/u2)du4\int(e^{u-4}/u^2)\,du is also not standard, but we can use integration by parts. Let's set v=1/uv = 1/u, dv=1/u2dudv = -1/u^2 \,du, and dw=eu4dudw = e^{u-4}\,du, w=eu4/e4w = e^{u-4}/e^{-4}. Then we get 4(vdw)=4vw4(wdv)4\int(vdw) = 4vw - 4\int(wdv).
  8. Calculate the third integral: The third integral 4(eu4/u2)du4\int(e^{u-4}/u^2)\,du is also not standard, but we can use integration by parts. Let's set v=1/uv = 1/u, dv=1/u2dudv = -1/u^2 \,du, and dw=eu4dudw = e^{u-4}\,du, w=eu4/e4w = e^{u-4}/e^{-4}. Then we get 4(vdw)=4vw4(wdv)4\int(vdw) = 4vw - 4\int(wdv).After calculating, we get 4(eu4/u)/e44(eu4/u2)du4(e^{u-4}/u)/e^4 - 4\int(-e^{u-4}/u^2)\,du, which simplifies to 4eu/(e4u)4(eu4/u2)du4e^u/(e^4u) - 4\int(e^{u-4}/u^2)\,du.