Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[d=sqrt((-11-(-2)^(2)+(10-7)^(2):})],[d=]:}

d=(11(2)2+(107)2d= \begin{array}{c}d=\sqrt{\left(-11-(-2)^{2}+(10-7)^{2}\right.} \\ d=\end{array}

Full solution

Q. d=(11(2)2+(107)2d= \begin{array}{c}d=\sqrt{\left(-11-(-2)^{2}+(10-7)^{2}\right.} \\ d=\end{array}
  1. Use Distance Formula: Use the distance formula to find the distance between two points in a plane. The distance formula is given by:\newlined=(x2x1)2+(y2y1)2 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \newlinewhere (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) are the coordinates of the two points.
  2. Substitute Given Points: Substitute the given points (2,7)(-2, 7) and (11,10)(-11, 10) into the distance formula. Let (2,7)(-2, 7) be (x1,y1)(x_1, y_1) and (11,10)(-11, 10) be (x2,y2)(x_2, y_2). Then we have:\newlined=((11)(2))2+((10)(7))2 d = \sqrt{((-11) - (-2))^2 + ((10) - (7))^2}
  3. Simplify Expression: Simplify the expression inside the square root.\newlined=(11+2)2+(107)2 d = \sqrt{(-11 + 2)^2 + (10 - 7)^2} \newlined=(9)2+(3)2 d = \sqrt{(-9)^2 + (3)^2} \newlined=81+9 d = \sqrt{81 + 9}
  4. Find Distance: Add the values inside the square root and then take the square root to find the distance.\newlined=90 d = \sqrt{90} \newlined=310 d = 3\sqrt{10} (since 90=9×1090 = 9 \times 10 and 9=3\sqrt{9} = 3)