Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[g(x)=int_(2)^(x)(13)/(1+t^(2))dt],[g^(')(5)=]:}

g(x)=2x131+t2dtg(5)= \begin{array}{l}g(x)=\int_{2}^{x} \frac{13}{1+t^{2}} d t \\ g^{\prime}(5)=\end{array}

Full solution

Q. g(x)=2x131+t2dtg(5)= \begin{array}{l}g(x)=\int_{2}^{x} \frac{13}{1+t^{2}} d t \\ g^{\prime}(5)=\end{array}
  1. Apply Fundamental Theorem of Calculus: We use the Fundamental Theorem of Calculus which says that if g(x)=axf(t)dtg(x) = \int_{a}^{x}f(t)\,dt, then g(x)=f(x)g'(x) = f(x).
  2. Calculate g(x)g'(x): So, g(x)=131+x2g'(x) = \frac{13}{1+x^{2}}.
  3. Find g(5)g'(5): Now we need to find g(5)g'(5), which means we plug in x=5x=5 into g(x)g'(x).
  4. Substitute x=5x=5: g(5)=131+52g'(5) = \frac{13}{1+5^{2}}.
  5. Simplify Result: Calculate g(5)=131+25g'(5) = \frac{13}{1+25}.
  6. Simplify Result: Calculate g(5)=131+25g'(5) = \frac{13}{1+25}. g(5)=1326g'(5) = \frac{13}{26}.
  7. Simplify Result: Calculate g(5)=131+25g'(5) = \frac{13}{1+25}. g(5)=1326g'(5) = \frac{13}{26}. Simplify g(5)=12g'(5) = \frac{1}{2}.

More problems from Find indefinite integrals using the substitution