Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(x+3)/(4x+4)dx.
Choose 1 answer:
(A) 
(1)/(4)x+ln |x+1|+C
(B) 
(1)/(4)x+2ln |x+1|+C
(C) 
(1)/(4)x+(ln |x+1|)/(2)+C
(D) 
(1)/(4)x+(ln |x+1|)/(4)+C

Evaluate the integral x+34x+4dx \int \frac{x+3}{4 x+4} d x .\newlineChoose 11 answer:\newline(A) 14x+lnx+1+C \frac{1}{4} x+\ln |x+1|+C \newline(B) 14x+2lnx+1+C \frac{1}{4} x+2 \ln |x+1|+C \newline(C) 14x+lnx+12+C \frac{1}{4} x+\frac{\ln |x+1|}{2}+C \newline(D) 14x+lnx+14+C \frac{1}{4} x+\frac{\ln |x+1|}{4}+C

Full solution

Q. Evaluate the integral x+34x+4dx \int \frac{x+3}{4 x+4} d x .\newlineChoose 11 answer:\newline(A) 14x+lnx+1+C \frac{1}{4} x+\ln |x+1|+C \newline(B) 14x+2lnx+1+C \frac{1}{4} x+2 \ln |x+1|+C \newline(C) 14x+lnx+12+C \frac{1}{4} x+\frac{\ln |x+1|}{2}+C \newline(D) 14x+lnx+14+C \frac{1}{4} x+\frac{\ln |x+1|}{4}+C
  1. Split Integral: Now, split the integral into two parts. \newline14(xx+1+3x+1)dx=14(xx+1dx+3x+1dx)\frac{1}{4} \int\left(\frac{x}{x+1} + \frac{3}{x+1}\right)dx = \frac{1}{4} \left(\int\frac{x}{x+1}dx + \int\frac{3}{x+1}dx\right)
  2. Substitution and Integration: For the first part, xx+1dx\int\frac{x}{x+1}\,dx, we can use a simple substitution. Let u=x+1u = x + 1, then du=dxdu = dx and x=u1x = u - 1. Substitute into the integral. 14(u1)udu\frac{1}{4} \int\frac{(u-1)}{u} \,du = 14(1du1udu)\frac{1}{4} (\int 1 \,du - \int\frac{1}{u} \,du)
  3. Final Integration: Now, integrate both parts.\newline14(1du1udu)=14(ulnu)+C\frac{1}{4} (\int 1 \, du - \int \frac{1}{u} \, du) = \frac{1}{4} (u - \ln|u|) + C
  4. Substitute Back: Substitute back for u=x+1u = x + 1.\newline14(ulnu)+C=14(x+1lnx+1)+C\frac{1}{4} (u - \ln|u|) + C = \frac{1}{4} (x + 1 - \ln|x+1|) + C\newline= \frac{\(1\)}{\(4\)} x + \frac{\(1\)}{\(4\)} - \frac{\(1\)}{\(4\)} \ln|x+\(1| + C
  5. Combine Constants: Combine the constants into a single constant CC.14x+1414lnx+1+C=14x+(1414)lnx+1+C=14x+lnx+14+C\frac{1}{4} x + \frac{1}{4} - \frac{1}{4} \ln|x+1| + C = \frac{1}{4} x + (\frac{1}{4} - \frac{1}{4}) \ln|x+1| + C = \frac{1}{4} x + \frac{\ln|x+1|}{4} + C

More problems from Find indefinite integrals using the substitution