Q. Evaluate the integral ∫4x+4x+3dx.Choose 1 answer:(A) 41x+ln∣x+1∣+C(B) 41x+2ln∣x+1∣+C(C) 41x+2ln∣x+1∣+C(D) 41x+4ln∣x+1∣+C
Split Integral: Now, split the integral into two parts. 41∫(x+1x+x+13)dx=41(∫x+1xdx+∫x+13dx)
Substitution and Integration: For the first part, ∫x+1xdx, we can use a simple substitution. Let u=x+1, then du=dx and x=u−1. Substitute into the integral. 41∫u(u−1)du = 41(∫1du−∫u1du)
Final Integration: Now, integrate both parts.41(∫1du−∫u1du)=41(u−ln∣u∣)+C
Substitute Back: Substitute back for u=x+1.41(u−ln∣u∣)+C=41(x+1−ln∣x+1∣)+C= \frac{\(1\)}{\(4\)} x + \frac{\(1\)}{\(4\)} - \frac{\(1\)}{\(4\)} \ln|x+\(1| + C
Combine Constants: Combine the constants into a single constant C.41x+41−41ln∣x+1∣+C=41x+(41−41)ln∣x+1∣+C=41x+4ln∣x+1∣+C
More problems from Find indefinite integrals using the substitution