Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(x-3)/((x-1)(x-2))dx

x3(x1)(x2)dx \int \frac{x-3}{(x-1)(x-2)} d x

Full solution

Q. x3(x1)(x2)dx \int \frac{x-3}{(x-1)(x-2)} d x
  1. Set up decomposition: We need to integrate the function (x3)/((x1)(x2))(x-3)/((x-1)(x-2)). To do this, we will use partial fractions" target="_blank" class="backlink">fraction decomposition to express the integrand as a sum of simpler fractions that we can integrate individually.
  2. Find AA and BB: First, we set up the partial fraction decomposition:\newline(x3)/((x1)(x2))=A(x1)+B(x2)(x-3)/((x-1)(x-2)) = \frac{A}{(x-1)} + \frac{B}{(x-2)}\newlineWe need to find the values of AA and BB.
  3. Plug in x values: To find AA and BB, we multiply both sides of the equation by (x1)(x2)(x-1)(x-2) to get rid of the denominators:\newline(x3)=A(x2)+B(x1)(x-3) = A(x-2) + B(x-1)
  4. Calculate integrals: Now we will find the values of AA and BB by plugging in convenient values for xx. Let's first plug in x=1x = 1:
    (13)=A(12)+B(11)(1-3) = A(1-2) + B(1-1)
    2=A-2 = -A
    A=2A = 2
  5. Integrate 2x1\frac{2}{x-1}: Next, we plug in x=2x = 2:
    (23)=A(22)+B(21)(2-3) = A(2-2) + B(2-1)
    1=B-1 = B
    B=1B = -1
  6. Integrate 1x2\frac{1}{x-2}: Now that we have AA and BB, we rewrite the original integral:\newline\int\frac{x\(-3\)}{(x\(-1\))(x\(-2\))}dx = \int\left(\frac{\(2\)}{x\(-1\)} - \frac{\(1\)}{x\(-2\)}\right)dx
  7. Combine results: We can now integrate each term separately: \(\int\left(\frac{\(2\)}{x\(-1\)}\right)dx - \int\left(\frac{\(1\)}{x\(-2\)}\right)dx
  8. Final indefinite integral: The integral of \(\frac{2}{x-1} is 2lnx12\ln|x-1|, and the integral of 1x2\frac{1}{x-2} is lnx2\ln|x-2|. So we have:\newline2lnx1lnx2+C2\ln|x-1| - \ln|x-2| + C, where CC is the constant of integration.
  9. Final indefinite integral: The integral of 2x1\frac{2}{x-1} is 2lnx12\ln|x-1|, and the integral of 1x2\frac{1}{x-2} is lnx2\ln|x-2|. So we have:\newline2lnx1lnx2+C2\ln|x-1| - \ln|x-2| + C, where CC is the constant of integration.We have found the indefinite integral of the given function:\newlinex3(x1)(x2)dx=2lnx1lnx2+C\int\frac{x-3}{(x-1)(x-2)}dx = 2\ln|x-1| - \ln|x-2| + C