Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(5)/(2x+1)dx

52x+1dx \int \frac{5}{2 x+1} d x

Full solution

Q. 52x+1dx \int \frac{5}{2 x+1} d x
  1. Simplify Integral: Let's simplify the integral: 52x+1dx\int \frac{5}{2x+1}\,dx We can factor out the constant 55: 5×12x+1dx5 \times \int \frac{1}{2x+1}\,dx
  2. Use Substitution: Now, let's use a substitution to make it easier:\newlineLet u=2x+1u = 2x + 1, then du=2dxdu = 2dx.\newlineSo, dx=du2dx = \frac{du}{2}.
  3. Substitute and Simplify: Substitute and simplify:\newline5×(1udu2)5 \times \int(\frac{1}{u} \cdot \frac{du}{2})\newline= 52×(1u)du\frac{5}{2} \times \int(\frac{1}{u})du
  4. Integrate with Respect: Integrate with respect to uu: 52lnu+C\frac{5}{2} \cdot \ln|u| + C
  5. Substitute Back: Substitute back for xx:u=2x+1u = 2x + 152ln2x+1+C\frac{5}{2} \cdot \ln|2x + 1| + C