Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


int(sqrt(9-x^(2)))/(x^(4))dx

9x2x4dx \int \frac{\sqrt{9-x^{2}}}{x^{4}} d x =

Full solution

Q. 9x2x4dx \int \frac{\sqrt{9-x^{2}}}{x^{4}} d x =
  1. Recognize Standard Form: Recognize the integral as a standard form that can be solved using trigonometric substitution. The integral is 9x2x4dx\int\frac{\sqrt{9-x^{2}}}{x^{4}}dx. We can use the substitution x=3sin(θ)x = 3\sin(\theta), where π2θπ2-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, because 9x2\sqrt{9-x^{2}} suggests a trigonometric identity sin2(θ)+cos2(θ)=1\sin^{2}(\theta) + \cos^{2}(\theta) = 1.
  2. Find dxdx in terms: Differentiate x=3sin(θ)x = 3\sin(\theta) to find dxdx in terms of d(θ)d(\theta).\newlinedxd(θ)=3cos(θ)\frac{dx}{d(\theta)} = 3\cos(\theta)\newlinedx=3cos(θ)d(θ)dx = 3\cos(\theta)d(\theta)
  3. Substitute xx and dxdx: Substitute xx and dxdx in the integral with the expressions involving theta.9x2x4dx=9(3sin(θ))2(3sin(θ))43cos(θ)d(θ)\int\frac{\sqrt{9-x^{2}}}{x^{4}}dx = \int\frac{\sqrt{9-(3\sin(\theta))^{2}}}{(3\sin(\theta))^{4}} \cdot 3\cos(\theta)d(\theta)Simplify the expression inside the integral.=99sin2(θ)27sin4(θ)3cos(θ)d(θ)= \int\frac{\sqrt{9-9\sin^{2}(\theta)}}{27\sin^{4}(\theta)} \cdot 3\cos(\theta)d(\theta)=9(1sin2(θ))27sin4(θ)3cos(θ)d(θ)= \int\frac{\sqrt{9(1-\sin^{2}(\theta))}}{27\sin^{4}(\theta)} \cdot 3\cos(\theta)d(\theta)=9cos2(θ)27sin4(θ)3cos(θ)d(θ)= \int\frac{\sqrt{9\cos^{2}(\theta)}}{27\sin^{4}(\theta)} \cdot 3\cos(\theta)d(\theta)=3cos(θ)27sin4(θ)3cos(θ)d(θ)= \int\frac{3\cos(\theta)}{27\sin^{4}(\theta)} \cdot 3\cos(\theta)d(\theta)=9cos2(θ)27sin4(θ)d(θ)= \int\frac{9\cos^{2}(\theta)}{27\sin^{4}(\theta)}d(\theta)=cos2(θ)3sin4(θ)d(θ)= \int\frac{\cos^{2}(\theta)}{3\sin^{4}(\theta)}d(\theta)
  4. Simplify Expression: Simplify the integral further by using the trigonometric identity cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta).
    (cos2(θ))/(3sin4(θ))d(θ)=((1sin2(θ)))/(3sin4(θ))d(θ)\int(\cos^2(\theta))/(3\sin^4(\theta))d(\theta) = \int((1 - \sin^2(\theta)))/(3\sin^4(\theta))d(\theta)
    Split the integral into two parts.
    = 13(1sin4(θ))d(θ)13(sin2(θ)sin4(θ))d(θ)\frac{1}{3} \int(\frac{1}{\sin^4(\theta)})d(\theta) - \frac{1}{3} \int(\frac{\sin^2(\theta)}{\sin^4(\theta)})d(\theta)
    = 13(csc4(θ))d(θ)13(1sin2(θ))d(θ)\frac{1}{3} \int(\csc^4(\theta))d(\theta) - \frac{1}{3} \int(\frac{1}{\sin^2(\theta)})d(\theta)
    = 13(csc4(θ))d(θ)13(csc2(θ))d(θ)\frac{1}{3} \int(\csc^4(\theta))d(\theta) - \frac{1}{3} \int(\csc^2(\theta))d(\theta)
  5. Use Trig Identity: Integrate each part separately.\newlineThe integral of csc4(θ)\csc^4(\theta) is not elementary, and the integral of csc2(θ)\csc^2(\theta) is cot(θ)-\cot(\theta).\newlineHowever, we can use integration by parts for the first integral or look for a reduction formula. Since the integral of csc4(θ)\csc^4(\theta) is not straightforward, we will use integration by parts.\newlineLet u=csc2(θ)u = \csc^2(\theta), dv=csc2(θ)d(θ)dv = \csc^2(\theta)d(\theta), then du=2csc2(θ)cot(θ)d(θ)du = -2\csc^2(\theta)\cot(\theta)d(\theta), v=cot(θ)v = -\cot(\theta).
  6. Apply Integration by Parts: Apply integration by parts to the first integral. \newlinecsc4(θ)d(θ)=uv(vdu)\int \csc^4(\theta)\,d(\theta) = u \cdot v - \int(v \cdot du)\newline=csc2(θ)cot(θ)(cot(θ)(2csc2(θ)cot(θ))d(θ))= -\csc^2(\theta)\cot(\theta) - \int(-\cot(\theta) \cdot (-2\csc^2(\theta)\cot(\theta))\,d(\theta))\newline=csc2(θ)cot(θ)+2(csc2(θ)cot2(θ)d(θ))= -\csc^2(\theta)\cot(\theta) + 2\int(\csc^2(\theta)\cot^2(\theta)\,d(\theta))
  7. Correct Integration Mistake: Realize that there is a mistake in the previous step.\newlineThe integration by parts was not applied correctly. The correct application should be:\newlinecsc4(θ)d(θ)=uv(vdu)\int \csc^4(\theta) \, d(\theta) = u \cdot v - \int(v \cdot du)\newline= csc2(θ)cot(θ)+2(cot2(θ)csc2(θ)d(θ))-\csc^2(\theta)\cot(\theta) + 2\int(\cot^2(\theta)\csc^2(\theta)\,d(\theta))\newlineHowever, this integral is still not elementary and requires further reduction, which is not straightforward. We need to reconsider our approach to this problem.