Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(b) Use integration by parts to evaluate 0π2xcosxdx \int_0^{\frac{\pi}{2}} x \cdot \cos x \, dx

Full solution

Q. (b) Use integration by parts to evaluate 0π2xcosxdx \int_0^{\frac{\pi}{2}} x \cdot \cos x \, dx
  1. Set up integration formula: Step 11: Set up the integration by parts formula.\newlineWe use the formula udv=uvvdu\int u \, dv = uv - \int v \, du. Let u=xu = x and dv=cos(x)dxdv = \cos(x) \, dx.\newlineThen, du=dxdu = dx and v=cos(x)dx=sin(x)v = \int\cos(x) \, dx = \sin(x).
  2. Apply integration by parts: Step 22: Apply the integration by parts formula.\newlinePlug in uu, vv, dudu, and dvdv into the formula:\newlinexcos(x)dx=xsin(x)sin(x)dx\int x \cos(x) \, dx = x \sin(x) - \int \sin(x) \, dx.
  3. Integrate sin(x)\sin(x): Step 33: Integrate sin(x)dx\int \sin(x) \, dx. The integral of sin(x)\sin(x) is cos(x)-\cos(x), so: xcos(x)dx=xsin(x)+cos(x)\int x \cos(x) \, dx = x \sin(x) + \cos(x).
  4. Evaluate definite integral: Step 44: Evaluate the definite integral from 00 to π/2\pi/2.\newlinePlug in the limits of integration:\newline[xsin(x)+cos(x)][x \sin(x) + \cos(x)] from 00 to π/2\pi/2.\newline= (π/2sin(π/2)+cos(π/2))(0sin(0)+cos(0))(\pi/2 \cdot \sin(\pi/2) + \cos(\pi/2)) - (0 \cdot \sin(0) + \cos(0))\newline= (π/21+0)(00+1)(\pi/2 \cdot 1 + 0) - (0 \cdot 0 + 1)\newline= π/21\pi/2 - 1.

More problems from Find indefinite integrals using the substitution and by parts