Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(e) Use the substitution \newlinex=3sinθx=3\sin \theta to evaluate\newline032dx(9x2)32\int_{0}^{\frac{3}{\sqrt{2}}}\frac{dx}{(9-x^{2})^{\frac{3}{2}}}

Full solution

Q. (e) Use the substitution \newlinex=3sinθx=3\sin \theta to evaluate\newline032dx(9x2)32\int_{0}^{\frac{3}{\sqrt{2}}}\frac{dx}{(9-x^{2})^{\frac{3}{2}}}
  1. Apply Substitution: Let's start by applying the substitution x=3sin(θ)x = 3\sin(\theta). We need to find the corresponding dxdx and the new limits of integration.\newlinedx=3cos(θ)d(θ)dx = 3\cos(\theta)d(\theta)
  2. Change Limits and Integration: Now, we substitute x=3sin(θ)x = 3\sin(\theta) into the integral and change the limits of integration. When x=0x = 0, sin(θ)=0\sin(\theta) = 0, so θ=0\theta = 0. When x=32x = \frac{3}{\sqrt{2}}, sin(θ)=12\sin(\theta) = \frac{1}{\sqrt{2}}, so θ=π4\theta = \frac{\pi}{4}.
  3. Simplify Denominator: The integral becomes: 0π/43cos(θ)d(θ)(9(3sin(θ))2)3/2\int_{0}^{\pi/4} \frac{3\cos(\theta)d(\theta)}{(9 - (3\sin(\theta))^2)^{3/2}} Simplify the denominator using the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1.
  4. Further Simplification: The integral simplifies to: 0π/43cos(θ)d(θ)(99sin2(θ))3/2\int_{0}^{\pi/4} \frac{3\cos(\theta)d(\theta)}{(9 - 9\sin^2(\theta))^{3/2}} = 0π/43cos(θ)d(θ)(9(1sin2(θ)))3/2\int_{0}^{\pi/4} \frac{3\cos(\theta)d(\theta)}{(9(1 - \sin^2(\theta)))^{3/2}} = 0π/43cos(θ)d(θ)(9cos2(θ))3/2\int_{0}^{\pi/4} \frac{3\cos(\theta)d(\theta)}{(9\cos^2(\theta))^{3/2}}
  5. Recognize Integral: Simplify the integral further:\newline=0π43cos(θ)d(θ)932cos3(θ)= \int_{0}^{\frac{\pi}{4}} \frac{3\cos(\theta)d(\theta)}{9^{\frac{3}{2}}\cos^3(\theta)}\newline=0π43cos(θ)d(θ)27cos3(θ)= \int_{0}^{\frac{\pi}{4}} \frac{3\cos(\theta)d(\theta)}{27\cos^3(\theta)}\newline=0π4(19cos2(θ))d(θ)= \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{9\cos^2(\theta)}\right)d(\theta)
  6. Evaluate Antiderivative: Recognize that 1cos2(θ)\frac{1}{\cos^2(\theta)} is sec2(θ)\sec^2(\theta), so the integral becomes:\newline= (19)0π4sec2(θ)d(θ)(\frac{1}{9})\int_{0}^{\frac{\pi}{4}} \sec^2(\theta)d(\theta)
  7. Evaluate Antiderivative: Recognize that 1cos2(θ)\frac{1}{\cos^2(\theta)} is sec2(θ)\sec^2(\theta), so the integral becomes:\newline= (19)0π4sec2(θ)d(θ)(\frac{1}{9})\int_{0}^{\frac{\pi}{4}} \sec^2(\theta)d(\theta) The integral of sec2(θ)\sec^2(\theta) is tan(θ)\tan(\theta), so we have:\newline= (19)[tan(θ)]0π4(\frac{1}{9})[\tan(\theta)]_{0}^{\frac{\pi}{4}}
  8. Evaluate Antiderivative: Recognize that 1cos2(θ)\frac{1}{\cos^2(\theta)} is sec2(θ)\sec^2(\theta), so the integral becomes:\newline= (19)0π4sec2(θ)d(θ)(\frac{1}{9})\int_{0}^{\frac{\pi}{4}} \sec^2(\theta)d(\theta) The integral of sec2(θ)\sec^2(\theta) is tan(θ)\tan(\theta), so we have:\newline= (19)[tan(θ)]0π4(\frac{1}{9})[\tan(\theta)]_{0}^{\frac{\pi}{4}} Evaluate the antiderivative at the limits of integration:\newline= (19)(tan(π4)tan(0))(\frac{1}{9})(\tan(\frac{\pi}{4}) - \tan(0))\newline= (19)(10)(\frac{1}{9})(1 - 0)\newline= 19\frac{1}{9}

More problems from Find indefinite integrals using the substitution