Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Use Green's theorem to evaluate the line integral along the given positively oriented curve,
∫
C
7
y
3
d
x
−
7
x
3
d
y
,
is the circle
x
2
+
y
2
=
4
\int_{C}7y^{3}\,dx-7x^{3}\,dy,\quad \text{is the circle } x^{2}+y^{2}=4
∫
C
7
y
3
d
x
−
7
x
3
d
y
,
is the circle
x
2
+
y
2
=
4
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
Use Green's theorem to evaluate the line integral along the given positively oriented curve,
∫
C
7
y
3
d
x
−
7
x
3
d
y
,
is the circle
x
2
+
y
2
=
4
\int_{C}7y^{3}\,dx-7x^{3}\,dy,\quad \text{is the circle } x^{2}+y^{2}=4
∫
C
7
y
3
d
x
−
7
x
3
d
y
,
is the circle
x
2
+
y
2
=
4
Apply Green's Theorem:
Use Green's theorem to convert the line integral into a double integral over the region enclosed by the curve.
Calculate Partial Derivatives:
Calculate the partial derivatives
∂
Q
∂
x
\frac{\partial Q}{\partial x}
∂
x
∂
Q
and
∂
P
∂
y
\frac{\partial P}{\partial y}
∂
y
∂
P
.
Substitute into Double Integral:
Substitute the partial derivatives into the double integral.
Convert to Polar Coordinates:
Recognize the region
R
R
R
as the disk
x
2
+
y
2
≤
4
x^2 + y^2 \leq 4
x
2
+
y
2
≤
4
. Convert to polar coordinates where
x
=
r
cos
(
θ
)
x = r \cos(\theta)
x
=
r
cos
(
θ
)
and
y
=
r
sin
(
θ
)
y = r \sin(\theta)
y
=
r
sin
(
θ
)
.
Set up Limits for Integration:
Substitute polar coordinates into the integral and set up the limits for
r
r
r
and
θ
\theta
θ
.
Simplify Using Trigonometric Identity:
Simplify the integrand using the identity
cos
2
(
θ
)
+
sin
2
(
θ
)
=
1
\cos^2(\theta) + \sin^2(\theta) = 1
cos
2
(
θ
)
+
sin
2
(
θ
)
=
1
.
Integrate with Respect to
r
r
r
:
Integrate with respect to
r
r
r
first.
Integrate with Respect to
θ
\theta
θ
:
Integrate the result with respect to
θ
\theta
θ
.
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant