Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


If 
I=int(dx)/(sin(x-a)sin(x-b)), then 
I is given by

If I=dxsin(xa)sin(xb)I=\int \frac{\mathrm{d}x}{\sin(x-a)\sin(x-b)}, then \newlineII is given by

Full solution

Q. If I=dxsin(xa)sin(xb)I=\int \frac{\mathrm{d}x}{\sin(x-a)\sin(x-b)}, then \newlineII is given by
  1. Apply Trigonometric Identity: Let's use the identity sin(c)sin(d)=12[cos(cd)cos(c+d)]\sin(c)\sin(d) = \frac{1}{2}[\cos(c-d) - \cos(c+d)] to simplify the integral.\newlineSo, sin(xa)sin(xb)=12[cos((xa)(xb))cos((xa)+(xb))]\sin(x-a)\sin(x-b) = \frac{1}{2}[\cos((x-a)-(x-b)) - \cos((x-a)+(x-b))].
  2. Simplify the Integral: This simplifies to 12[cos(ba)cos(2xab)]\frac{1}{2}[\cos(b-a) - \cos(2x-a-b)]. Now, I=dx12[cos(ba)cos(2xab)].I = \int \frac{dx}{\frac{1}{2}[\cos(b-a) - \cos(2x-a-b)]}.
  3. Factor Out Constants: We can take out the constant term 12\frac{1}{2} and cos(ba)\cos(b-a) from the denominator, so I=2dxcos(ba)cos(2xab)I = \frac{2\int \mathrm{d}x}{\cos(b-a) - \cos(2x-a-b)}.
  4. Use Substitution: Now, let's use the substitution u=2xabu = 2x - a - b, which means du=2dxdu = 2dx. So, dx=du2dx = \frac{du}{2}.
  5. Integrate with Substitution: Substitute back into the integral, we get I=2(du2)/[cos(ba)cos(u)]I = 2\int(\frac{du}{2})/[\cos(b-a) - \cos(u)]. This simplifies to I=(ducos(ba)cos(u))I = \int(\frac{du}{\cos(b-a) - \cos(u)}).
  6. Split Integral: Now, we can split the integral into two parts: I=ducos(ba)ducos(u)I = \int \frac{du}{\cos(b-a)} - \int \frac{du}{\cos(u)}.
  7. Evaluate First Integral: The first integral ducos(ba)\int\frac{du}{\cos(b-a)} is just ucos(ba)\frac{u}{\cos(b-a)} since cos(ba)\cos(b-a) is a constant.
  8. Evaluate Second Integral: The second integral ducos(u)\int\frac{du}{\cos(u)} is a standard integral that equals lnsec(u)+tan(u)\ln|\sec(u) + \tan(u)|.
  9. Combine Results: So, I=ucos(ba)lnsec(u)+tan(u)+CI = \frac{u}{\cos(b-a)} - \ln|\sec(u) + \tan(u)| + C, where CC is the constant of integration.
  10. Substitute Back and Simplify: Now, substitute back u=2xabu = 2x - a - b to get II in terms of xx.
    I=2xabcos(ba)lnsec(2xab)+tan(2xab)+CI = \frac{2x - a - b}{\cos(b-a)} - \ln|\sec(2x - a - b) + \tan(2x - a - b)| + C.