Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(7)/((x-2)(x+5))dx

7(x2)(x+5)dx \int \frac{7}{(x-2)(x+5)} d x

Full solution

Q. 7(x2)(x+5)dx \int \frac{7}{(x-2)(x+5)} d x
  1. Partial Fraction Decomposition: We have the integral to solve: \newline7(x2)(x+5)dx\int\frac{7}{(x-2)(x+5)}dx\newlineTo solve this integral, we will use partial fractions" target="_blank" class="backlink">fraction decomposition to break the integrand into simpler fractions that can be integrated easily.
  2. Express Integrands as Fractions: Express the integrand as a sum of partial fractions.\newlineWe want to find constants AA and BB such that:\newline7(x2)(x+5)=A(x2)+B(x+5)\frac{7}{(x-2)(x+5)} = \frac{A}{(x-2)} + \frac{B}{(x+5)}\newlineTo find AA and BB, we multiply both sides by the denominator (x2)(x+5)(x-2)(x+5) to get:\newline7=A(x+5)+B(x2)7 = A(x+5) + B(x-2)
  3. Solve for Constants AA and BB: Solve for AA and BB by substituting suitable values for xx. Let x=2x = 2, then we get: 7=A(2+5)+B(22)7 = A(2+5) + B(2-2) 7=7A7 = 7A A=1A = 1 Let x=5x = -5, then we get: BB00 BB11 BB22
  4. Rewrite Integral with Partial Fractions: Rewrite the integral with the found partial fractions.\newline\int\frac{\(7\)}{(x\(-2\))(x+\(5\))}dx = \int\frac{\(1\)}{x\(-2\)}dx - \int\frac{\(1\)}{x+\(5\)}dx
  5. Integrate Each Term Separately: Integrate each term separately. The integral of \(\frac{1}{(x-2)}dx is lnx2\ln|x-2|, and the integral of 1(x+5)\frac{1}{(x+5)}dx is lnx+5\ln|x+5|. So, 1(x2)dx1(x+5)dx=lnx2lnx+5+C\int\frac{1}{(x-2)}dx - \int\frac{1}{(x+5)}dx = \ln|x-2| - \ln|x+5| + C, where CC is the constant of integration.
  6. Combine Results for Final Answer: Combine the results to write the final answer.\newlineThe indefinite integral of 7(x2)(x+5)\frac{7}{(x-2)(x+5)} with respect to xx is lnx2lnx+5+C\ln|x-2| - \ln|x+5| + C.