Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Find the roots of factored polynomials
The function
f
f
f
is given in three equivalent forms.
\newline
Which form most quickly reveals the zeros (or
Get tutor help
\newline
Solve the quadratic equation below. If the solutions are not real, enter NA.
\newline
15
x
2
−
x
−
2
=
0
15 x^{2}-x-2=0
15
x
2
−
x
−
2
=
0
\newline
The field below accepts a list of numbers or formulas separated by semicolons (e.g.
2
;
4
;
6
2 ; 4 ; 6
2
;
4
;
6
x
+
1
;
x
−
1
)
x+1 ; x-1)
x
+
1
;
x
−
1
)
. The order of the list does not matter.
\newline
To enter
a
\sqrt{a}
a
, type
sqrt
(
a
)
\operatorname{sqrt}(\mathrm{a})
sqrt
(
a
)
.
\newline
x
=
x=
x
=
Get tutor help
Consider the equation
0.75
×
1
0
(
w
3
)
=
30
0.75\times10^{\left(\frac{w}{3}\right)}=30
0.75
×
1
0
(
3
w
)
=
30
\newline
Solve the equation for
w
w
w
. Express the solution as a logarithm in base
−
10
-10
−
10
.
\newline
w
=
w=
w
=
□
\square
□
\newline
Approximate the value of
w
w
w
. Round your answer to the nearest thousandth.
\newline
w
≈
w\approx
w
≈
□
\square
□
Get tutor help
If
x
2
−
y
2
=
24
x^{2}-y^{2}=24
x
2
−
y
2
=
24
,
x
+
y
=
8
x+y=8
x
+
y
=
8
, then
3
x
−
3
y
=
3x-3y=
3
x
−
3
y
=
Get tutor help
What value of
x
x
x
is the solution to the equation
\newline
x
−
4
2
=
x
−
13
\frac{x-4}{2}=x-13
2
x
−
4
=
x
−
13
?
\newline
Enter your answer in the space provided.
\newline
x
=
x=
x
=
□
\square
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
6
x
2
−
18
x
−
240
=
0
6x^{2}-18x-240=0
6
x
2
−
18
x
−
240
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
(
3
y
2
+
2
)
d
y
d
x
=
1
\left(3 y^{2}+2\right) \frac{d y}{d x}=1
(
3
y
2
+
2
)
d
x
d
y
=
1
and
y
(
−
1
)
=
1
y(-1)=1
y
(
−
1
)
=
1
.
\newline
What is
x
x
x
when
y
=
2
y=2
y
=
2
?
\newline
x
=
x=
x
=
Get tutor help
Solve the following equation for
x
x
x
. Express your answer in the simplest form.
\newline
4
+
3
(
−
6
x
+
6
)
=
9
+
4
(
8
x
−
6
)
4+3(-6 x+6)=9+4(8 x-6)
4
+
3
(
−
6
x
+
6
)
=
9
+
4
(
8
x
−
6
)
\newline
Get tutor help
Solve the following equation for
x
x
x
. Express your answer in the simplest form.
\newline
−
8
−
5
(
6
x
−
2
)
=
−
7
(
5
x
−
6
)
+
5
-8-5(6 x-2)=-7(5 x-6)+5
−
8
−
5
(
6
x
−
2
)
=
−
7
(
5
x
−
6
)
+
5
\newline
Get tutor help
Solve the following equation for
x
x
x
. Express your answer in the simplest form.
\newline
−
3
x
+
5
(
9
x
+
1
)
=
−
2
−
6
(
−
4
x
−
9
)
-3 x+5(9 x+1)=-2-6(-4 x-9)
−
3
x
+
5
(
9
x
+
1
)
=
−
2
−
6
(
−
4
x
−
9
)
\newline
Get tutor help
A curve has equation
y
=
1
60
(
3
x
+
1
)
2
y=\frac{1}{60}(3x+1)^{2}
y
=
60
1
(
3
x
+
1
)
2
and a point is moving along the curve. Find the
x
x
x
-coordinate of the point on the curve at which the
x
x
x
- and
y
y
y
-coordinates are increasing at the same rate.
\quad
Get tutor help
If
f
(
1
)
=
9
f(1)=9
f
(
1
)
=
9
and
f
(
n
)
=
f
(
n
−
1
)
+
3
f(n)=f(n-1)+3
f
(
n
)
=
f
(
n
−
1
)
+
3
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
4
f(1)=4
f
(
1
)
=
4
and
f
(
n
)
=
f
(
n
−
1
)
−
5
f(n)=f(n-1)-5
f
(
n
)
=
f
(
n
−
1
)
−
5
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
4
f(1)=4
f
(
1
)
=
4
and
f
(
n
)
=
f
(
n
−
1
)
+
3
f(n)=f(n-1)+3
f
(
n
)
=
f
(
n
−
1
)
+
3
then find the value of
f
(
5
)
f(5)
f
(
5
)
.
\newline
Answer:
Get tutor help
Solve the following equation for
x
x
x
. Express your answer in the simplest form.
\newline
3
x
+
6
=
−
3
(
−
x
−
2
)
3 x+6=-3(-x-2)
3
x
+
6
=
−
3
(
−
x
−
2
)
\newline
Get tutor help
Solve the following equation for
x
x
x
. Express your answer in the simplest form.
\newline
−
2
(
3
x
−
1
)
=
−
6
x
+
2
-2(3 x-1)=-6 x+2
−
2
(
3
x
−
1
)
=
−
6
x
+
2
\newline
Get tutor help
Solve the following equation for
x
x
x
. Express your answer in the simplest form.
\newline
5
(
3
x
+
3
)
=
5
(
3
x
+
3
)
5(3 x+3)=5(3 x+3)
5
(
3
x
+
3
)
=
5
(
3
x
+
3
)
\newline
Get tutor help
Solve for
x
x
x
.\ Enter the solutions from least to greatest.
\newline
(
x
+
6
)
(
−
x
+
1
)
=
0
(x+6)(-x+1)=0
(
x
+
6
)
(
−
x
+
1
)
=
0
\newline
lesser
\newline
x=__________
\newline
greater
\newline
x=___________
Get tutor help
Complete the point-slope equation of the line through
(
−
9
,
6
)
(-9,6)
(
−
9
,
6
)
and
(
−
7
,
−
8
)
(-7,-8)
(
−
7
,
−
8
)
.
\newline
Use exact numbers.
\newline
y
−
6
=
y-6=
y
−
6
=
\newline
□
\square
□
Get tutor help
Complete the point-slope equation of the line through
(
−
5
,
4
)
(-5,4)
(
−
5
,
4
)
and
(
1
,
6
)
(1,6)
(
1
,
6
)
.
\newline
Use exact numbers.
\newline
y
−
6
=
□
y-6= \square
y
−
6
=
□
\newline
Get tutor help
Complete the point-slope equation of the line through
(
−
1
,
6
)
(-1,6)
(
−
1
,
6
)
and
(
1
,
5
)
(1,5)
(
1
,
5
)
.
\newline
Use exact numbers.
\newline
y
−
6
=
□
y - 6 = \square
y
−
6
=
□
Get tutor help
Find the argument of the complex number
9
+
3
3
i
9+3 \sqrt{3} i
9
+
3
3
i
in the interval
0
≤
θ
<
2
π
0 \leq \theta<2 \pi
0
≤
θ
<
2
π
.
\newline
Express your answer in terms of
π
\pi
π
.
\newline
Answer:
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
6
cos
2
θ
−
5
cos
θ
=
1
-6 \cos ^{2} \theta-5 \cos \theta=1
−
6
cos
2
θ
−
5
cos
θ
=
1
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cos
2
θ
−
cos
θ
=
0
\cos ^{2} \theta-\cos \theta=0
cos
2
θ
−
cos
θ
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
7
sin
2
θ
−
3
=
4
sin
θ
7 \sin ^{2} \theta-3=4 \sin \theta
7
sin
2
θ
−
3
=
4
sin
θ
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
4
cos
2
θ
+
13
cos
θ
−
5
=
9
cos
θ
−
8
-4 \cos ^{2} \theta+13 \cos \theta-5=9 \cos \theta-8
−
4
cos
2
θ
+
13
cos
θ
−
5
=
9
cos
θ
−
8
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
2
cos
2
θ
−
3
cos
θ
=
1
-2 \cos ^{2} \theta-3 \cos \theta=1
−
2
cos
2
θ
−
3
cos
θ
=
1
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
6
sin
2
θ
−
5
sin
θ
+
4
=
3
6 \sin ^{2} \theta-5 \sin \theta+4=3
6
sin
2
θ
−
5
sin
θ
+
4
=
3
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
sin
2
θ
−
4
sin
θ
−
5
=
0
\sin ^{2} \theta-4 \sin \theta-5=0
sin
2
θ
−
4
sin
θ
−
5
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cot
2
θ
+
4
cot
θ
+
3
=
0
\cot ^{2} \theta+4 \cot \theta+3=0
cot
2
θ
+
4
cot
θ
+
3
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cos
2
θ
−
cos
θ
−
12
=
0
\cos ^{2} \theta-\cos \theta-12=0
cos
2
θ
−
cos
θ
−
12
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cot
2
θ
−
5
cot
θ
+
6
=
0
\cot ^{2} \theta-5 \cot \theta+6=0
cot
2
θ
−
5
cot
θ
+
6
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
7
7
7
−
20
-20
−
20
. The, area of the rectangle below is
8
1
4
8 \frac{1}{4}
8
4
1
square inches. Find the perimeter. Show your work.
\newline
Width is
4
1
2
i
n
4 \frac{1}{2} \mathrm{in}
4
2
1
in
.
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
8
−
9
i
)
(
10
−
2
i
)
(-8-9 i)(10-2 i)
(
−
8
−
9
i
)
(
10
−
2
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
1
+
9
i
)
(
11
−
7
i
)
(-1+9 i)(11-7 i)
(
−
1
+
9
i
)
(
11
−
7
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
5
−
6
i
)
(
−
9
−
9
i
)
(5-6 i)(-9-9 i)
(
5
−
6
i
)
(
−
9
−
9
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
12
−
4
i
)
(
−
6
−
9
i
)
(12-4 i)(-6-9 i)
(
12
−
4
i
)
(
−
6
−
9
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
5
−
9
i
)
2
(-5-9 i)^{2}
(
−
5
−
9
i
)
2
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
9
−
7
i
)
(
3
+
6
i
)
(-9-7 i)(3+6 i)
(
−
9
−
7
i
)
(
3
+
6
i
)
\newline
Answer:
Get tutor help
Write
(
−
1
+
3
i
)
4
(-1+3 i)^{4}
(
−
1
+
3
i
)
4
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
6
−
7
i
)
(
−
3
+
5
i
)
(-6-7 i)(-3+5 i)
(
−
6
−
7
i
)
(
−
3
+
5
i
)
\newline
Answer:
Get tutor help
Write
(
−
3
+
i
)
4
(-3+i)^{4}
(
−
3
+
i
)
4
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
2
+
4
i
)
3
(2+4 i)^{3}
(
2
+
4
i
)
3
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
−
1
+
2
i
)
4
(-1+2 i)^{4}
(
−
1
+
2
i
)
4
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
−
1
+
4
i
)
3
(-1+4 i)^{3}
(
−
1
+
4
i
)
3
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
−
1
+
3
i
)
3
(-1+3 i)^{3}
(
−
1
+
3
i
)
3
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
4
+
5
i
)
2
(4+5 i)^{2}
(
4
+
5
i
)
2
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
−
1
+
2
i
)
3
(-1+2 i)^{3}
(
−
1
+
2
i
)
3
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Rewrite in simplest terms:
3
(
−
6
s
+
4
t
)
+
0.8
t
−
3
(
t
−
5
s
)
3(-6 s+4 t)+0.8 t-3(t-5 s)
3
(
−
6
s
+
4
t
)
+
0.8
t
−
3
(
t
−
5
s
)
\newline
Answer:
Get tutor help
Rewrite in simplest terms:
7
(
−
0.3
v
+
8
v
+
1
)
−
v
7(-0.3 v+8 v+1)-v
7
(
−
0.3
v
+
8
v
+
1
)
−
v
\newline
Answer:
Get tutor help
1
2
3
...
6
Next