Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(-1+2i)^(3) in simplest 
a+bi form.
Answer:

Write (1+2i)3 (-1+2 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (1+2i)3 (-1+2 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:
  1. Calculate Square: To solve (1+2i)3(-1+2i)^{3}, we will first calculate the square of (1+2i)(-1+2i) and then multiply the result by (1+2i)(-1+2i) again.(1+2i)2=(1+2i)×(1+2i)=14i+4i2(-1+2i)^{2} = (-1+2i) \times (-1+2i) = 1 - 4i + 4i^{2}. Since i2=1i^{2} = -1, we replace i2i^{2} with 1-1.14i4=34i1 - 4i - 4 = -3 - 4i.
  2. Multiply by (1+2i)(-1+2i): Now we have the square of (1+2i)(-1+2i), which is 34i-3 - 4i. We will multiply this result by (1+2i)(-1+2i) to find the cube.\newline(34i)×(1+2i)=3+4i6i8i2.(-3 - 4i) \times (-1 + 2i) = 3 + 4i - 6i - 8i^2.\newlineAgain, we replace i2i^2 with 1-1.\newline3+4i6i+8=112i.3 + 4i - 6i + 8 = 11 - 2i.

More problems from Find the roots of factored polynomials