Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(-3+i)^(4) in simplest 
a+bi form.
Answer:

Write (3+i)4 (-3+i)^{4} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (3+i)4 (-3+i)^{4} in simplest a+bi a+b i form.\newlineAnswer:
  1. Recognize Complex Number: To solve (3+i)4(-3+i)^{4}, we first need to recognize that we are raising a complex number to the fourth power. We can start by raising (3+i)2(-3+i)^{2} to simplify the expression step by step.(3+i)2=(3+i)(3+i)=(3)2+2(3)(i)+(i)2(-3+i)^2 = (-3+i)(-3+i) = (-3)^2 + 2(-3)(i) + (i)^2=96i1 (since i2=1)= 9 - 6i - 1 \text{ (since } i^2 = -1)=86i= 8 - 6i
  2. Square to Simplify: Now we need to square the result of (3+i)2(-3+i)^2 to get (3+i)4(-3+i)^4. \newline(86i)2=(86i)(86i)=822(8)(6i)+(6i)2(8 - 6i)^2 = (8 - 6i)(8 - 6i) = 8^2 - 2(8)(6i) + (6i)^2\newline=6496i+36(i2)= 64 - 96i + 36(i^2)\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1 to get:\newline=6496i36= 64 - 96i - 36\newline=2896i= 28 - 96i
  3. Square Result for (3+i)4(-3+i)^4: We have now expressed (3+i)4(-3+i)^4 in the simplest a+bia+bi form, which is 2896i28 - 96i.

More problems from Find the roots of factored polynomials