Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3y^(2)+2)(dy)/(dx)=1 and 
y(-1)=1.
What is 
x when 
y=2 ?

x=

(3y2+2)dydx=1 \left(3 y^{2}+2\right) \frac{d y}{d x}=1 and y(1)=1 y(-1)=1 .\newlineWhat is x x when y=2 y=2 ?\newlinex= x=

Full solution

Q. (3y2+2)dydx=1 \left(3 y^{2}+2\right) \frac{d y}{d x}=1 and y(1)=1 y(-1)=1 .\newlineWhat is x x when y=2 y=2 ?\newlinex= x=
  1. Separate variables: First, we need to separate the variables to integrate both sides of the differential equation. So we get \frac{dy}{\(3\)y^{\(2\)}+\(2\)} = \frac{dx}{\(1\)}\.
  2. Integrate both sides: Now, integrate both sides. The integral of \(\frac{dy}{3y^{2}+2} with respect to yy is the integral of dxdx with respect to xx.
  3. Find constant of integration: The integral of dy3y2+2\frac{dy}{3y^{2}+2} is 13arctan(y2/3)+C\frac{1}{3} \cdot \arctan\left(\frac{y}{\sqrt{2/3}}\right) + C, and the integral of dxdx is xx.
  4. Solve for C: We need to find the constant of integration CC using the initial condition y(1)=1y(-1)=1. So we plug in y=1y=1 and x=1x=-1 into the integrated equation: (13)arctan(123)+C=1(-\frac{1}{3}) \cdot \arctan(\frac{1}{\sqrt{\frac{2}{3}}}) + C = -1.
  5. Particular solution: Solve for CC. C=1+(13)arctan(32)C = -1 + \left(\frac{1}{3}\right) \cdot \arctan\left(\sqrt{\frac{3}{2}}\right).
  6. Find xx when y=2y=2: Now we have the particular solution. We need to find xx when y=2y=2. Plug y=2y=2 into the integrated equation: (1/3)arctan(2/2/3)+C=x(1/3) \cdot \arctan(2/\sqrt{2/3}) + C = x.
  7. Substitute CC into equation: Substitute the value of CC we found earlier into the equation: x=(13)arctan(223)1+(13)arctan(32)x = \left(\frac{1}{3}\right) * \arctan\left(\frac{2}{\sqrt{\frac{2}{3}}}\right) - 1 + \left(\frac{1}{3}\right) * \arctan\left(\sqrt{\frac{3}{2}}\right).
  8. Calculate x: Now, calculate the value of xx. x(13)arctan(232)1+(13)arctan(32)x \approx \left(\frac{1}{3}\right) * \text{arctan}\left(2*\sqrt{\frac{3}{2}}\right) - 1 + \left(\frac{1}{3}\right) * \text{arctan}\left(\sqrt{\frac{3}{2}}\right).

More problems from Find the roots of factored polynomials