Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-6-7i)(-3+5i)
Answer:

Simplify the expression to a + bi form:\newline(67i)(3+5i) (-6-7 i)(-3+5 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(67i)(3+5i) (-6-7 i)(-3+5 i) \newlineAnswer:
  1. Distribute First Term: Distribute the first term of the first complex number across the second complex number.\newline(6)(3)+(6)(5i)=1830i(-6)(-3) + (-6)(5i) = 18 - 30i
  2. Distribute Second Term: Distribute the second term of the first complex number across the second complex number.\newline(7i)(3)+(7i)(5i)=21i35i2(-7i)(-3) + (-7i)(5i) = 21i - 35i^2\newlineSince i2=1i^2 = -1, we can simplify 35i2-35i^2 to 3535.
  3. Simplify Imaginary Parts: Combine the real parts and the imaginary parts from Step 11 and Step 22.\newlineReal parts: 18+35=5318 + 35 = 53\newlineImaginary parts: 30i+21i=9i-30i + 21i = -9i
  4. Combine Real and Imaginary: Write the final answer in a+bia + bi form.\newlineThe simplified expression is 539i53 - 9i.

More problems from Find the roots of factored polynomials