Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-9-7i)(3+6i)
Answer:

Simplify the expression to a + bi form:\newline(97i)(3+6i) (-9-7 i)(3+6 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(97i)(3+6i) (-9-7 i)(3+6 i) \newlineAnswer:
  1. Apply Distributive Property: First, we need to apply the distributive property (also known as the FOIL method for binomials) to multiply the two complex numbers.\newline(97i)(3+6i)=(9×3)+(9×6i)+(7i×3)+(7i×6i)(-9-7i)(3+6i) = (-9 \times 3) + (-9 \times 6i) + (-7i \times 3) + (-7i \times 6i)
  2. Calculate Each Part: Now, we calculate each part of the expression separately.\newline(9×3)=27(-9 \times 3) = -27\newline(9×6i)=54i(-9 \times 6i) = -54i\newline(7i×3)=21i(-7i \times 3) = -21i\newline(7i×6i)=42i2(-7i \times 6i) = -42i^2 (Remember that i2=1i^2 = -1)
  3. Combine Real and Imaginary Parts: Next, we combine the real parts and the imaginary parts and simplify using i2=1i^2 = -1.
    Real part: 27-27
    Imaginary part: 54i21i=75i-54i - 21i = -75i
    And for the term with i2i^2: 42i2=42(1)=42-42i^2 = -42(-1) = 42
  4. Add Real and Imaginary Parts: Now, we add the real part and the simplified term with i2i^2 together, and then combine it with the imaginary part.\newlineReal part: 27+42=15-27 + 42 = 15\newlineImaginary part: 75i-75i\newlineSo, the expression in a+bia + bi form is 1575i15 - 75i.

More problems from Find the roots of factored polynomials