Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(2+4i)^(3) in simplest 
a+bi form.
Answer:

Write (2+4i)3 (2+4 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (2+4i)3 (2+4 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:
  1. Expand Expression: Expand the expression (2+4i)3(2+4i)^{3} using the binomial theorem or by multiplying (2+4i)(2+4i) by itself three times.\newlineCalculation: (2+4i)×(2+4i)×(2+4i)(2+4i) \times (2+4i) \times (2+4i)
  2. Multiply First Two Terms: Multiply the first two (2+4i)(2+4i) terms together.\newlineCalculation: (2+4i)×(2+4i)=4+16i+16i2(2+4i) \times (2+4i) = 4 + 16i + 16i^2\newlineSince i2=1i^2 = -1, we can simplify this to: 4+16i16=12+16i4 + 16i - 16 = -12 + 16i
  3. Multiply Result: Multiply the result from Step 22 by the remaining (2+4i)(2+4i) term.\newlineCalculation: (-12 + 16i) \times (2+4i) = -24 + 32i - 48i + 64i^2\(\newlineAgain, since \$i^2 = -1\), we can simplify this to: \(-24 + 32i - 48i - 64 = -88 - 16i\)
  4. Combine Like Terms: Combine like terms to get the expression in \(a+bi\) form.\(\newline\)Calculation: \(-88 - 16i\)

More problems from Find the roots of factored polynomials