Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-5-9i)^(2)
Answer:

Simplify the expression to a + bi form:\newline(59i)2 (-5-9 i)^{2} \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(59i)2 (-5-9 i)^{2} \newlineAnswer:
  1. Apply Formula: To simplify the expression (59i)2(-5-9i)^{2}, we need to square the complex number (59i)(-5-9i). This involves using the formula (abi)2=a22abi+(bi)2(a-bi)^{2} = a^{2} - 2abi + (bi)^{2}.
  2. Square Real Part: First, we square the real part: (5)2=25(-5)^2 = 25.
  3. Square Imaginary Part: Next, we square the imaginary part: (9i)2(-9i)^2. Remembering that i2=1i^2 = -1, we get (9i)2=81i2=81(1)=81(-9i)^2 = 81i^2 = 81(-1) = -81.
  4. Calculate Middle Term: Now, we calculate the middle term, which is 22 times the product of the real part and the imaginary part: 2×(5)×(9i)=90i2\times(-5)\times(-9i) = 90i.
  5. Combine Terms: We combine all the terms to get the simplified expression: 2581+90i=56+90i25 - 81 + 90i = -56 + 90i.

More problems from Find the roots of factored polynomials